Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Anaesthesia ; 79(2): 156-167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921438

ABSTRACT

It is unclear if cardiopulmonary resuscitation is an aerosol-generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out-of-hospital cardiac arrests. Exhaled aerosol was recorded using an optical particle sizer spectrometer connected to the breathing system. Aerosol produced during resuscitation was compared with that produced by control participants under general anaesthesia ventilated with an equivalent respiratory pattern to cardiopulmonary resuscitation. A porcine cardiac arrest model was used to determine the independent contributions of ventilatory breaths, chest compressions and external cardiac defibrillation to aerosol generation. Time-series analysis of participants with cardiac arrest (n = 18) demonstrated a repeating waveform of respiratory aerosol that mapped to specific components of resuscitation. Very high peak aerosol concentrations were generated during ventilation of participants with cardiac arrest with median (IQR [range]) 17,926 (5546-59,209 [1523-242,648]) particles.l-1 , which were 24-fold greater than in control participants under general anaesthesia (744 (309-2106 [23-9099]) particles.l-1 , p < 0.001, n = 16). A substantial rise in aerosol also occurred with cardiac defibrillation and chest compressions. In a complimentary porcine model of cardiac arrest, aerosol recordings showed a strikingly similar profile to the human data. Time-averaged aerosol concentrations during ventilation were approximately 270-fold higher than before cardiac arrest (19,410 (2307-41,017 [104-136,025]) vs. 72 (41-136 [23-268]) particles.l-1 , p = 0.008). The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high-risk pathogens, until the airway is secured with an airway device and breathing system with a filter.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Humans , Animals , Swine , Cardiopulmonary Resuscitation/methods , Out-of-Hospital Cardiac Arrest/therapy , Heart , Respiration , Exhalation
2.
Anaesthesia ; 78(5): 587-597, 2023 05.
Article in English | MEDLINE | ID: mdl-36710390

ABSTRACT

Aerosol-generating procedures are medical interventions considered high risk for transmission of airborne pathogens. Tracheal intubation of anaesthetised patients is not high risk for aerosol generation; however, patients often perform respiratory manoeuvres during awake tracheal intubation which may generate aerosol. To assess the risk, we undertook aerosol monitoring during a series of awake tracheal intubations and nasendoscopies in healthy participants. Sampling was undertaken within an ultraclean operating theatre. Procedures were performed and received by 12 anaesthetic trainees. The upper airway was topically anaesthetised with lidocaine and participants were not sedated. An optical particle sizer continuously sampled aerosol. Passage of the bronchoscope through the vocal cords generated similar peak median (IQR [range]) aerosol concentrations to coughing, 1020 (645-1245 [120-48,948]) vs. 1460 (390-2506 [40-12,280]) particles.l-1 respectively, p = 0.266. Coughs evoked when lidocaine was sprayed on the vocal cords generated 91,700 (41,907-166,774 [390-557,817]) particles.l-1 which was significantly greater than volitional coughs (p < 0.001). For 38 nasendoscopies in 12 participants, the aerosol concentrations were relatively low, 180 (120-525 [0-9552]) particles.l-1 , however, five nasendoscopies generated peak aerosol concentrations greater than a volitional cough. Awake tracheal intubation and nasendoscopy can generate high concentrations of respiratory aerosol. Specific risks are associated with lidocaine spray of the larynx, instrumentation of the vocal cords, procedural coughing and deep breaths. Given the proximity of practitioners to patient-generated aerosol, airborne infection control precautions are appropriate when undertaking awake upper airway endoscopy (including awake tracheal intubation, nasendoscopy and bronchoscopy) if respirable pathogens cannot be confidently excluded.


Subject(s)
Cough , Wakefulness , Humans , Cough/etiology , Respiratory Aerosols and Droplets , Intubation, Intratracheal/methods , Lidocaine
3.
J Phys Chem A ; 126(17): 2619-2631, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35467353

ABSTRACT

New approaches for the sensitive and accurate quantification of aerosol optical properties are needed to improve the current understanding of the unique physical chemistry of airborne particles and to explore their roles in fields as diverse as chemical manufacturing, healthcare, and atmospheric science. We have pioneered the use of cavity ring-down spectroscopy (CRDS), with concurrent angularly resolved elastic light scattering measurements, to interrogate the optical properties of single aerosol particles levitated in optical and electrodynamic traps. This approach enables the robust quantification of optical properties such as extinction cross sections for individual particles of known size. Our measurements can now distinguish the scattering and absorption contributions to the overall light extinction, from which the real and imaginary components of the complex refractive indices can be retrieved and linked to chemical composition. In this Feature Article, we show that this innovative measurement platform enables accurate and precise optical measurements for spherical and nonspherical particles, whether nonabsorbing or absorbing at the CRDS probe wavelength. We discuss the current limitations of our approach and the key challenges in physical and atmospheric chemistry that can now be addressed by CRDS measurements for single aerosol particles levitated in controlled environments.

4.
Anaesthesia ; 77(1): 22-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34700360

ABSTRACT

Manual facemask ventilation, a core component of elective and emergency airway management, is classified as an aerosol-generating procedure. This designation is based on one epidemiological study suggesting an association between facemask ventilation and transmission during the SARS-CoV-1 outbreak in 2003. There is no direct evidence to indicate whether facemask ventilation is a high-risk procedure for aerosol generation. We conducted aerosol monitoring during routine facemask ventilation and facemask ventilation with an intentionally generated leak in anaesthetised patients. Recordings were made in ultraclean operating theatres and compared against the aerosol generated by tidal breathing and cough manoeuvres. Respiratory aerosol from tidal breathing in 11 patients was reliably detected above the very low background particle concentrations with median [IQR (range)] particle counts of 191 (77-486 [4-1313]) and 2 (1-5 [0-13]) particles.l-1 , respectively, p = 0.002. The median (IQR [range]) aerosol concentration detected during facemask ventilation without a leak (3 (0-9 [0-43]) particles.l-1 ) and with an intentional leak (11 (7-26 [1-62]) particles.l-1 ) was 64-fold (p = 0.001) and 17-fold (p = 0.002) lower than that of tidal breathing, respectively. Median (IQR [range]) peak particle concentration during facemask ventilation both without a leak (60 (0-60 [0-120]) particles.l-1 ) and with a leak (120 (60-180 [60-480]) particles.l-1 ) were 20-fold (p = 0.002) and 10-fold (0.001) lower than a cough (1260 (800-3242 [100-3682]) particles.l-1 ), respectively. This study demonstrates that facemask ventilation, even when performed with an intentional leak, does not generate high levels of bioaerosol. On the basis of this evidence, we argue facemask ventilation should not be considered an aerosol-generating procedure.


Subject(s)
Masks , Respiratory Aerosols and Droplets/chemistry , Adult , Aged , Cough/etiology , Female , Humans , Male , Middle Aged , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology
5.
Phys Chem Chem Phys ; 23(34): 18568-18579, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612393

ABSTRACT

A refined technique for observing the complete evaporation behaviour of free-falling droplets, from droplet generation to complete solvent evaporation, with ultra-high time resolution is introduced and benchmarked. High-resolution phase-delay stroboscopic imaging is employed to simultaneously resolve the evolving droplet morphology, geometric and aerodynamic diameters, throughout the evaporative lifetime with a user-controlled < µs timescale. This allows rapid, complex morphological changes, such as crystallisation events, to be clearly observed and the corresponding mechanisms to be inferred. The dried particles are sampled for offline SEM analysis and the observed morphologies compared to the inflight imaging. Density changes can be calculated directly from the deviation between the geometric and aerodynamic diameters. The full capabilities of the new technique are demonstrated by examination of the different evaporation behaviours and crystallisation mechanisms for aqueous sodium chloride droplets evaporating under different ambient relative humidity (RH) conditions. The crystallisation window, defined as the time taken from initial to complete crystallisation, is shown to be RH dependent, extending from 0.03 s at 20% RH and 0.13 s at 40% RH. The different crystallisation mechanisms observed during the experiments are also clearly reflected in the final structure of the dry particles, with multi-crystal structures produced at low RH compared to single-crystal structures at higher RH. It is anticipated that this technique will unlock measurements which explore the evaporation behaviour and crystallisation mechanisms for rapid, complex droplet drying events, and with increasingly non-ideal solutions, relevant to industrial applications.

6.
Anaesthesia ; 76(2): 174-181, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33022093

ABSTRACT

The potential aerosolised transmission of severe acute respiratory syndrome coronavirus-2 is of global concern. Airborne precaution personal protective equipment and preventative measures are universally mandated for medical procedures deemed to be aerosol generating. The implementation of these measures is having a huge impact on healthcare provision. There is currently a lack of quantitative evidence on the number and size of airborne particles produced during aerosol-generating procedures to inform risk assessments. To address this evidence gap, we conducted real-time, high-resolution environmental monitoring in ultraclean ventilation operating theatres during tracheal intubation and extubation sequences. Continuous sampling with an optical particle sizer allowed characterisation of aerosol generation within the zone between the patient and anaesthetist. Aerosol monitoring showed a very low background particle count (0.4 particles.l-1 ) allowing resolution of transient increases in airborne particles associated with airway management. As a positive reference control, we quantitated the aerosol produced in the same setting by a volitional cough (average concentration, 732 (418) particles.l-1 , n = 38). Tracheal intubation including facemask ventilation produced very low quantities of aerosolised particles (average concentration, 1.4 (1.4) particles.l-1 , n = 14, p < 0.0001 vs. cough). Tracheal extubation, particularly when the patient coughed, produced a detectable aerosol (21 (18) l-1 , n = 10) which was 15-fold greater than intubation (p = 0.0004) but 35-fold less than a volitional cough (p < 0.0001). The study does not support the designation of elective tracheal intubation as an aerosol-generating procedure. Extubation generates more detectable aerosol than intubation but falls below the current criterion for designation as a high-risk aerosol-generating procedure. These novel findings from real-time aerosol detection in a routine healthcare setting provide a quantitative methodology for risk assessment that can be extended to other airway management techniques and clinical settings. They also indicate the need for reappraisal of what constitutes an aerosol-generating procedure and the associated precautions for routine anaesthetic airway management.


Subject(s)
Aerosols , Airway Extubation , COVID-19/transmission , Intubation, Intratracheal , Airway Management , Anesthesia , Anesthetists , Cough , Environmental Monitoring , Humans , Operating Rooms , Particle Size , Patients , Personal Protective Equipment , Prospective Studies , Respiration, Artificial , SARS-CoV-2 , Ventilation
7.
Anaesthesia ; 76(12): 1577-1584, 2021 12.
Article in English | MEDLINE | ID: mdl-34287820

ABSTRACT

Many guidelines consider supraglottic airway use to be an aerosol-generating procedure. This status requires increased levels of personal protective equipment, fallow time between cases and results in reduced operating theatre efficiency. Aerosol generation has never been quantitated during supraglottic airway use. To address this evidence gap, we conducted real-time aerosol monitoring (0.3-10-µm diameter) in ultraclean operating theatres during supraglottic airway insertion and removal. This showed very low background particle concentrations (median (IQR [range]) 1.6 (0-3.1 [0-4.0]) particles.l-1 ) against which the patient's tidal breathing produced a higher concentration of aerosol (4.0 (1.3-11.0 [0-44]) particles.l-1 , p = 0.048). The average aerosol concentration detected during supraglottic airway insertion (1.3 (1.0-4.2 [0-6.2]) particles.l-1 , n = 11), and removal (2.1 (0-17.5 [0-26.2]) particles.l-1 , n = 12) was no different to tidal breathing (p = 0.31 and p = 0.84, respectively). Comparison of supraglottic airway insertion and removal with a volitional cough (104 (66-169 [33-326]), n = 27), demonstrated that supraglottic airway insertion/removal sequences produced <4% of the aerosol compared with a single cough (p < 0.001). A transient aerosol increase was recorded during one complicated supraglottic airway insertion (which initially failed to provide a patent airway). Detailed analysis of this event showed an atypical particle size distribution and we subsequently identified multiple sources of non-respiratory aerosols that may be produced during airway management and can be considered as artefacts. These findings demonstrate supraglottic airway insertion/removal generates no more bio-aerosol than breathing and far less than a cough. This should inform the design of infection prevention strategies for anaesthetists and operating theatre staff caring for patients managed with supraglottic airways.


Subject(s)
Airway Extubation/standards , Environmental Monitoring/standards , Intubation, Intratracheal/standards , Operating Rooms/standards , Particle Size , Supraglottitis/therapy , Airway Extubation/methods , Airway Management/methods , Airway Management/standards , Cough/therapy , Environmental Monitoring/methods , Humans , Intubation, Intratracheal/methods , Operating Rooms/methods , Personal Protective Equipment/standards , Prospective Studies
8.
Phys Chem Chem Phys ; 21(19): 9709-9719, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31025989

ABSTRACT

The simultaneous evaporation and condensation of multiple volatile components from multicomponent aerosol droplets leads to changes in droplet size, composition and temperature. Measurements and models that capture and predict these dynamic aerosol processes are key to understanding aerosol microphysics in a broad range of contexts. We report measurements of the evaporation kinetics of droplets (initially ∼25 µm radius) formed from mixtures of ethanol and water levitated within a electrodynamic balance over timescales spanning 500 ms to 6 s. Measurements of evaporation into a gas phase of varied relative humidity and temperature are shown to compare well with predictions from a numerical model. We show that water condensation from the gas phase can occur concurrently with ethanol evaporation from aqueous-ethanol droplets. Indeed, water can condense so rapidly during the evaporation of a pure ethanol droplet in a humid environment, driven by the evaporative cooling the droplet experiences, that the droplet becomes pure water within 0.4 s.

10.
J Phys Chem A ; 119(22): 5701-13, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25989469

ABSTRACT

We present measurements of the evolving extinction cross sections of individual aerosol particles (spanning 700-2500 nm in radius) during the evaporation of volatile components or hygroscopic growth using a combination of a single particle trap formed from a Bessel light beam and cavity ring-down spectroscopy. For single component organic aerosol droplets of 1,2,6-hexanetriol, polyethylene glycol 400, and glycerol, the slow evaporation of the organic component (over time scales of 1000 to 10,000 s) leads to a time-varying size and extinction cross section that can be used to estimate the refractive index of the droplet. Measurements on binary aqueous-inorganic aerosol droplets containing one of the inorganic solutes ammonium bisulfate, ammonium sulfate, sodium nitrate, or sodium chloride (over time scales of 1000 to 15,000 s) under conditions of changing relative humidity show that extinction cross-section measurements are consistent with expectations from accepted models for the variation in droplet refractive index with hygroscopic growth. In addition, we use these systems to establish an experimental protocol for future single particle extinction measurements. The advantages of mapping out the evolving light extinction cross-section of an individual particle over extended time frames accompanied by hygroscopic cycling or component evaporation are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL