ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.
Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Camelus , Humans , Mice , SARS-CoV-2/genetics , Single-Domain Antibodies/geneticsABSTRACT
OBJECTIVE: To identify recurrent venous thromboembolism (VTE) after discontinuation of anticoagulation in patients with isolated distal deep vein thrombosis based on its anatomic localization (axial or muscular veins). METHODS: Data were sourced from PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov databases in the time period up to October 2023. The study followed PRISMA guidelines using a registered protocol (CRD42023443029). Studies reporting recurrent VTE in patients with axial or muscular DVT were included in the analysis. RESULTS: Five studies with a total of 1,403 participants were evaluated. The results showed a pooled odds ratio of 1.12 (95% confidence interval 0.77-1.63) between axial and muscular DVT. Heterogeneity was low (I2 = 0%, p = 0.91) and there was no significant difference in the rate of recurrent VTE between axial and muscular DVT in each subgroup. CONCLUSIONS: Muscular and axial DVT showed comparable recurrent VTE rates after anticoagulation. However, uncertainties regarding the possibility of recurrence affecting the popliteal vein or resulting in pulmonary embolism following muscular DVT anticoagulation persisted. Randomized trials in patients with isolated distal DVT are still needed to clarify its prognosis for different anatomical thrombus locations.
ABSTRACT
OBJECTIVE: To compare the predictive efficacy of the PADUA and Caprini models for pulmonary embolism (PE) in gynecological inpatients, analyze the risk factors for PE, and validate whether both models can effectively predict mortality rates. METHODS: A total of 355 gynecological inpatients who underwent computed tomography pulmonary angiography (CTPA) were included in the retrospective analysis. The comparative assessment of the predictive capabilities for PE between the PADUA and Caprini was carried out using receiver operating characteristic (ROC) curves. Logistic regression analysis was used to identify risk factors associated with PE. Additionally, Kaplan-Meier survival analysis plots were generated to validate the predictive efficacy for mortality rates. RESULTS: Among 355 patients, the PADUA and Caprini demonstrated the area under the curve (AUC) values of 0.757 and 0.756, respectively. There was no statistically significant difference in the AUC between the two models (P = 0.9542). Multivariate logistic analysis revealed immobility (P < 0.001), history of venous thromboembolism (VTE) (P = 0.002), thrombophilia (P < 0.001), hormonal treatment (P = 0.022), and obesity (P = 0.019) as independent risk factors for PE. Kaplan-Meier survival analysis demonstrated the reliable predictive efficacy of both the Caprini (P = 0.00051) and PADUA (P = 0.00031) for mortality. ROC for the three- and six-month follow-ups suggested that the Caprini model exhibited superior predictive efficacy for mortality. CONCLUSIONS: The PADUA model can serve as a simple and effective tool for stratifying high-risk gynecological inpatients before undergoing CTPA. The Caprini model demonstrated superior predictive efficacy for mortality rates.
ABSTRACT
Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.
ABSTRACT
Neurofilament light chain (NFL), as a measure of neuroaxonal injury, has recently gained attention in alcohol dependence (AD). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme which metabolizes the alcohol breakdown product acetaldehyde. An ALDH2 single nucleotide polymorphism (rs671) is associated with less ALDH2 enzyme activity and increased neurotoxicity. We examined the blood NFL levels in 147 patients with AD and 114 healthy controls using enzyme-linked immunosorbent assay and genotyped rs671. We also followed NFL level, alcohol craving and psychological symptoms in patients with AD after 1 and 2 weeks of detoxification. We found the baseline NFL level was significantly higher in patients with AD than in controls (mean ± SD: 264.2 ± 261.8 vs. 72.1 ± 35.6 pg/mL, p < 0.001). The receiver operating characteristic curve revealed that NFL concentration could discriminate patients with AD from controls (area under the curve: 0.85; p < 0.001). The NFL levels were significantly reduced following 1 and 2 weeks of detoxification, with the extent of reduction correlated with the improvement of craving, depression, and anxiety (p < 0.001). Carriers with the rs671 GA genotype, which is associated with less ALDH2 activity, had higher NLF levels either at baseline or after detoxification compared with GG carriers. In conclusion, plasma NFL level was increased in patients with AD and reduced after early abstinence. Reduction in NFL level corroborated well with the improvement of clinical symptoms. The ALDH2 rs671 polymorphism may play a role in modulating the extent of neuroaxonal injury and its recovery.
Subject(s)
Alcoholism , Aldehyde Dehydrogenase, Mitochondrial , Neurofilament Proteins , Humans , Alcohol Drinking , Alcoholism/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Genetic Predisposition to Disease , Intermediate Filaments , Polymorphism, Single Nucleotide/genetics , Risk Factors , Neurofilament Proteins/geneticsABSTRACT
Although ALK tyrosine kinase inhibitors (ALK-TKIs) have shown remarkable benefits in EML4-ALK positive NSCLC patients compared to conventional chemotherapy, the optimal sequence of ALK-TKIs treatment remains unclear due to the emergence of primary and acquired resistance and the lack of potential prognostic biomarkers. In this study, we systematically explored the validity of sequential ALK inhibitors (alectinib, lorlatinib, crizotinib, ceritinib and brigatinib) for a heavy-treated patient with EML4-ALK fusion via developing an in vitro and in vivo drug testing system based on patient-derived models. Based on the patient-derived models and clinical responses of the patient, we found that crizotinib might inhibit proliferation of EML4-ALK positive tumors resistant to alectinib and lorlatinib. In addition, NSCLC patients harboring the G1269A mutation, which was identified in alectinib, lorlatinib and crizotinib-resistant NSCLC, showed responsiveness to brigatinib and ceritinib. Transcriptomic analysis revealed that brigatinib suppressed the activation of multiple inflammatory signaling pathways, potentially contributing to its anti-tumor activity. Moreover, we constructed a prognostic model based on the expression of IL6, CXCL1, and CXCL5, providing novel perspectives for predicting prognosis in EML4-ALK positive NSCLC patients. In summary, our results delineate clinical responses of sequential ALK-TKIs treatments and provide insights into the mechanisms underlying the superior effects of brigatinib in patients harboring ALKG1269A mutation and resistant towards alectinib, lorlatinib and crizotinib. The molecular signatures model based on the combination of IL6, CXCL1 and CXCL5 has the potential to predict prognosis of EML4-ALK positive NSCLC patients.
Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Lung Neoplasms , Oncogene Proteins, Fusion , Organophosphorus Compounds , Protein Kinase Inhibitors , Pyrimidines , Humans , Organophosphorus Compounds/therapeutic use , Organophosphorus Compounds/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Animals , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Prognosis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Lactams/therapeutic use , Carbazoles/therapeutic use , Carbazoles/pharmacology , Sulfones/therapeutic use , Sulfones/pharmacology , Crizotinib/therapeutic use , Crizotinib/pharmacology , Cell Line, Tumor , Piperidines/therapeutic use , Piperidines/pharmacology , Female , Mice , Inflammation/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Male , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/metabolism , Cell Proliferation/drug effects , Mutation , Aminopyridines/therapeutic use , Aminopyridines/pharmacologyABSTRACT
BACKGROUND: Quantifying the informal caregiver burden is important for understanding the risk factors associated with caregiver overload and for evaluating the effectiveness of services provided in Long-term Care (LTC). OBJECTIVE: This study aimed to develop and validate a Caregiver Strain Index (CSI)-based score for quantifying the informal caregiver burden, while the original dataset did not fully cover evaluation items commonly included in international assessments. Subsequently, we utilized the CSI-based score to pinpoint key caregiver burden risk factors, examine the initial timing of LTC services adoption, and assess the impact of LTC services on reducing caregiver burden. METHODS: The study analyzed over 28,000 LTC cases in Southern Taiwan from August 2019 to December 2022. Through multiple regression analysis, we identified significant risk factors associated with caregiver burden and examined changes in this burden after utilizing various services. Survival analysis was employed to explore the relationship between adopting the first LTC services and varying levels of caregiver burden. RESULTS: We identified 126 significant risk factors for caregiver burden. The most critical factors included caregiving for other disabled family members or children under the age of three (ß = 0.74, p < 0.001), the employment status of the caregiver (ß = 0.30-0.53, p < 0.001), the frailty of the care recipient (ß = 0.28-0.31, p < 0.001), and the behavioral symptoms of dementia in care recipients (ß = 0.28-2.60, p < 0.05). Generally, caregivers facing higher burdens sought LTC services earlier, and providing home care services alleviated the caregiver's burden. CONCLUSION: This comprehensive study suggests policy refinements to recognize high-risk caregivers better early and provide timely support to improve the overall well-being of both informal caregivers and care recipients.
Subject(s)
Caregiver Burden , Caregivers , Long-Term Care , Humans , Taiwan/epidemiology , Male , Female , Caregiver Burden/psychology , Aged , Caregivers/psychology , Long-Term Care/methods , Middle Aged , Risk Factors , Aged, 80 and over , Stress, Psychological/psychology , Stress, Psychological/epidemiology , AdultABSTRACT
INTRODUCTION: The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS: The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS: Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION: These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS: The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.
Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Memory T Cells , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E4/genetics , Down-Regulation , Hippocampus/metabolism , Hippocampus/pathology , Interleukin-7/blood , Leukocytes, Mononuclear/metabolism , Memory T Cells/metabolism , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolismABSTRACT
To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4 and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts.
ABSTRACT
OBJECTIVE: To explore the genetic etiology of a child with delayed growth and development and carry out a literature review. METHODS: A child suspected for Al Kaissi syndrome at the First Affiliated Hospital of Zhengzhou University on March 6, 2021 was selected as the study subject. Following extraction of genomic DNA, the child was subjected to copy number variation sequencing (CNV-seq) and whole exome sequencing (WES), and candidate variants were verified by PCR-agarose gel electrophoresis and quantitative real-time PCR (qPCR). Prenatal diagnosis was conducted on chorionic villi sample upon subsequent pregnancy. RESULTS: The child, a 6-year-and-4-month-old boy, has dysmorphic features including low-set protruding ears and triangular face, delayed language and intellectual development, and ventricular septal defect. CNV-seq result has found no obvious abnormality, whilst WES revealed homozygous deletion of exons 1 and 2 of the CDK10 gene, which was confirmed by PCR-agarose gel electrophoresis and qPCR. Both of his parents were heterozygous carriers. Prenatal diagnosis using chorionic villi samples suggested that the fetus also carried the heterozygous deletion. CONCLUSION: The clinical features of Al Kaissi syndrome in this child can probably be attributed to the homozygous deletion of exons 1 and 2 of the CDK10 gene.
Subject(s)
DNA Copy Number Variations , Prenatal Diagnosis , Child , Female , Humans , Male , Pregnancy , Cyclin-Dependent Kinases/genetics , Exons , Homozygote , Sequence DeletionABSTRACT
Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (â¼10.1 nm), high pore volumes (â¼1.8 cm3·g-1), high surface areas (â¼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.
Subject(s)
Alzheimer Disease , Nanospheres , Humans , Nanospheres/chemistry , Amyloid beta-Peptides , Silicon Dioxide/chemistry , Micelles , Gels , AmidesABSTRACT
Zika Virus (ZIKV) infection is a global threat. Other than the congenital neurological disorders it causes, ZIKV infection has been reported to induce cardiac complications. However, the precise treatment plans are unclear. Thus, illustrating the pathogenic mechanism of ZIKV in the heart is critical to providing effective prevention and treatment of ZIKV infection. The mechanism of autophagy has been reported recently in Dengue virus infection. Whether or not autophagy participates in ZIKV infection and its role remains unrevealed. This study successfully established the in vitro cardiomyocytes and in vivo mouse models of ZIKV infection to investigate the involvement of autophagy in ZIKV infection. The results showed that ZIKV infection is both time and gradient-dependent. The key autophagy protein, LC3B, increased remarkably after ZIKV infection. Meanwhile, autophagic flux was detected by immunofluorescence. Applying autophagy inhibitors decreased the LC3B levels. Furthermore, the number of viral copies was quantified to evaluate the influence of autophagy during infection. We found that autophagy was actively involved in the ZIKV infection and the inhibition of autophagy could effectively reduce the viral copies, suggesting a potential intervention strategy for reducing ZIKV infection and the undesired complications caused by ZIKV.
Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Virus ReplicationABSTRACT
The bending tendency of a surfactant monolayer at an interface is critical in determining the type of emulsion formed and the proximity of the emulsion system to its equilibrium state. Despite its importance, the influence of interaction and surfactant structure on the bending tendency has not been quantitatively investigated. In this study, we develop and validate an artificial neural network (ANN) model based on the torque densities from dissipative particle dynamics (DPD) simulations to address this gap. With the validated ANN model, the relationship between surfactant monolayer bending tendency and all the interaction parameters, oil size, and surfactant structure (size and tail branching) was derived, from which the significance of each factor was ranked. With this ANN model, both the relationship and factor analysis can be instantly investigated without further DPD modeling. Furthermore, we expand the study to surfactant-oil-polar solvent (SOP) systems by varying the interaction parameters between polar solvents (PP). Our finding indicates that the interaction between polar solvents plays an important role in determining the bending tendency of surfactant monolayers; weaker intermolecular attraction between polar solvents makes surfactants tend to bend toward the oil phase (tend to form oil in polar solvent emulsion). Factor analysis reveals that increasing the repulsion between head-head (HH) or head-oil (HO) makes the model surfactants more polar-solvophilic, while increasing the repulsion between polar solvent-head (PH), tail-tail (TT) or oil-oil (OO) makes the model surfactants more lipophilic. The ANN model effectively reproduces the dependence of surfactant monolayer bending tendency on oil size, consistent with experimental observations, the larger the oil size, the higher the bending tendency toward the oil phase. The most intriguing insight derived from the ANN model here is that the effect of branching in the lipophilic tail will be enhanced by factors that make surfactants behave more lipophilic in a surfactant-oil-polar solvent (SOP) system, for rather polar-solvophilic surfactants, the effect of tail branching is negligible.
ABSTRACT
PURPOSE: The objective was to determine the effectiveness and safety of paclitaxel-coated balloon angioplasty in hemodialysis patients with diabetic nephropathy (DN). MATERIALS AND METHODS: The outcomes of end-stage renal disease (ESRD) patients with peripheral artery disease (PAD) and treated with drug-coated balloon (DCB) angioplasty were retrospectively evaluated. The effectiveness outcomes were clinical improvement of the Rutherford classification and target lesion revascularization (TLR). Safety outcomes were all-cause mortality and amputation. RESULTS: Ninety-seven patients were treated with DCB angioplasty between December 2018 and December 2020. 87 (63.8±10.1 years) achieved technical success. Most patients had a Rutherford classification of at least grade 4. The mean lesion length was 169.8±73.8 mm, almost all had arterial calcification, and 31.0% had annular calcification. Wounds were present in 73.6% of the target limbs. The mean follow-up in this cohort was 13.4±7.4 months. The wound healing rate was 61.5% at the 12-month follow-up. All-cause mortality during 12 months of follow-up was 35.6%, amputation-free survival was 58.6%, and TLR was observed in 13 (15.3%) patients. At 3 and 12 months of follow-up, the Rutherford grade significantly improved (p<0.001). The Cox proportional hazards model revealed that wounds (hazard ratio [HR]=1.404, p=0.023) and annular calcification (HR=2.076, p=0.031) were independent predictors of amputation-free survival. CONCLUSIONS: Drug-coated balloon angioplasty in ESRD patients was effective and safe over the medium term. Wounds and annular calcification were independent predictors of amputation-free survival. CLINICAL IMPACT: The effectiveness of DCB angioplasty in ESRD patients and the factors affecting major outcome prognosis in this population remain limited. This study contributes valuable insights into the effectiveness and safety of paclitaxel-coated balloon angioplasty for PAD in hemodialysis patients. Medical professionals can now regard DCB angioplasty as a viable treatment. Identifying wound presence and annular calcification as predictors of amputation-free survival equips medical practitioners with a more tailored approach to patient management, potentially resulting in enhanced outcomes and more precise treatment strategies.
ABSTRACT
BACKGROUND: With the increase in the aging population, informal caregivers have become an essential pillar for the long-term care of older individuals. However, providing care can have a negative impact and increase the burden on caregivers, which is a cause for concern. OBJECTIVE: This study aimed to comprehensively depict the concept of "informal caregiver burden" through bibliometric and content analyses. METHODS: We searched the Web of Science (WoS) database to obtain bibliometric data and included only papers published between 2013 and 2022. We used content analysis to extract and identify the core concepts within the text systematically. RESULTS: Altogether, 934 papers were included in the bibliometric analysis, from which we selected 19 highly impactful papers for content analysis. The results indicate that researchers have focused on exploring the factors that impact informal caregiver burden. Meanwhile, there has been a widespread discussion regarding the caregiver burden among those caring for recipients with specific illnesses, such as dementia, Alzheimer's disease, and cancer, as these illnesses can contribute to varying levels of burden on informal caregivers. In addition, questionnaires and interviews emerged as the predominant methods for data collection in the realm of informal caregiver research. Furthermore, we identified 26 distinct assessment tools specifically tailored for evaluating burden, such as caregiver strain index (CSI). CONCLUSION: For future studies, we suggest considering the intersectionality of factors contributing to the burden on informal caregivers. This approach could enhance the well-being of both caregivers and older care recipients.
Subject(s)
Alzheimer Disease , Caregivers , Humans , Aged , Caregiver Burden , Aging , Surveys and Questionnaires , Quality of LifeABSTRACT
BACKGROUND: Alzheimer's disease (AD) is complicated by multiple environmental and polygenetic factors. The accuracy of artificial neural networks (ANNs) incorporating the common factors for identifying AD has not been evaluated. METHODS: A total of 184 probable AD patients and 3773 healthy individuals aged 65 and over were enrolled. AD-related genes (51 SNPs) and 8 environmental factors were selected as features for multilayer ANN modeling. Random Forest (RF) and Support Vector Machine with RBF kernel (SVM) were also employed for comparison. Model results were verified using traditional statistics. RESULTS: The ANN achieved high accuracy (0.98), sensitivity (0.95), and specificity (0.96) in the intrinsic test for AD classification. Excluding age and genetic data still yielded favorable results (accuracy: 0.97, sensitivity: 0.94, specificity: 0.96). The assigned weights to ANN features highlighted the importance of mental evaluation, years of education, and specific genetic variations (CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650) for AD classification. Receiver operating characteristic analysis revealed AUC values of 0.99 (intrinsic test), 0.60 (TWB-GWA), and 0.72 (CG-WGS), with slightly lower AUC values (0.96, 0.80, 0.52) when excluding age in ANN. The performance of the ANN model in AD classification was comparable to RF, SVM (linear kernel), and SVM (RBF kernel). CONCLUSIONS: The ANN model demonstrated good sensitivity, specificity, and accuracy in AD classification. The top-weighted SNPs for AD prediction were CASS4 rs7274581, PICALM rs3851179, and TOMM40 rs2075650. The ANN model performed similarly to RF and SVM, indicating its capability to handle the complexity of AD as a disease entity.
ABSTRACT
Objectives: To evaluate lesions of sacroiliac joint (SIJ) by combination of diffusion-weighted imaging (DWI) and magnetization transfer (MT). Methods: A retrospective study was used in this study. Forty-nine ankylosing spondylitis (AS) patients admitted to The China Academy of Chinese Medical Sciences Xiyuan Hospital from May 2020 to October 2020 were collected into active and inactive groups. Twenty-two healthy volunteers were recruited. Apparent diffusion coefficient (ADC) values for bone marrow edema (BME), sclerosis area, fat deposit area, and normal-appearing bone marrow (NABM) (both patients and healthy volunteers) and the magnetization transfer (MT) rate of the cartilage (MTRc) were analyzed in the groups. The above five parameters (ADC (NABM), ADC (BME) and ADC (fat deposit) and MTRc) between the active group and the inactive group were compared. The effectiveness of each parameter in diagnosing sacroiliac arthritis of ankylosing spondylitis were analyzed, and the predictive value of the parameters was compared. Result: ADC(BME), ADC(NABM) and MTRc showed statistically significant differences between the active and inactive groups (P <0.05). ADC (BME) and ADC (NABM) could predict the activity of AS sacroiliac arthritis (P <0.01). ADC (NABM) and MTRc were significantly different between healthy volunteers and the active group (P <0.01). The areas under the ROC curve (AUCs) of ADC (BME)_ADC(NABM), ADC(NABM)_MTR, and ADC(BME)_MTRc were 0.885 (cut-off value=0.69), 0.849 (cut-off value=0.56) and 0.864 (cut-off value=0.60), respectively. The predictive ability of the combined index ADC (BME)_MTRc and ADC(NABM)_MTRc was increased. Conclusion: The ability to diagnose and predict AS might be improved by the combination of diffusion-weighted imaging (DWI) and magnetization transfer (MT).
ABSTRACT
Neutrophils play a prominent role in the inflammatory response and are a critical factor in the pathogenesis of acute lung injury (ALI). Despite a deep understanding of neutrophil accumulation in the pulmonary microvasculature during the process of this disease, the regulatory mechanism of neutrophil recruitment remains unclear. This study aimed to explore the functions and signaling pathways of the purinergic receptor P2Y6 in mediating the innate immune response in ALI. P2Y6-deficient mice, bone marrow chimeras, and neutrophilic chimeras were created in this work to explore the function of P2Y6 in ALI. The results indicated that the extracellular nucleotide UDP was released as a dangerous signal and activated P2Y6 to promote the inflammatory response and pulmonary damage during the process of ALI. P2Y6 deficiency may mitigate deterioration of this disease, including reduced ALI-related inflammatory factor release and immune cell invasion. Bone marrow and neutrophil chimeras and adoptive transfer in mice showed that P2Y6 expression on neutrophils contributed to neutrophil infiltration into lung tissues induced by UDP. Further work indicated that P2Y6 was involved in the neutrophil migration capability through the ErK signaling pathway by mediating the deformation of F-actin filaments and pseudopodia formation during cell recruitment to pulmonary tissue. Here, we provide evidence for the mechanism by which the purinergic receptor P2Y6 contributes to ALI development by regulating neutrophil infiltration into lung tissues. These data indicated that P2Y6 might be a potential therapeutic target for the treatment of this acute severe disease.
Subject(s)
Acute Lung Injury , Neutrophils , Acute Lung Injury/pathology , Animals , Lipopolysaccharides/metabolism , Mice , Neutrophil Infiltration , Neutrophils/metabolism , Uridine Diphosphate/metabolismABSTRACT
Methadone is a synthetic opioid used for the maintenance treatment (MMT) of heroin dependence. It primarily binds to the µ-opioid receptor (MOR; with its gene, namely OPRM1). Methadone is also an N-methyl-D-aspartate (NMDA) receptor antagonist. The role of NMDA receptor in the regulatory mechanisms of methadone dosage in heroin dependent patients is so far not clear. D-amino acid oxidase (DAO) is an important enzyme that indirectly activates the NMDA receptor through its effect on the D-serine level. To test the hypothesis that genetic polymorphisms in the DAO gene are associated with methadone treatment dose and responses, we selected four single nucleotide polymorphisms (SNPs) in DAO from the literature reports of the Taiwanese population. SNPs were genotyped in 344 MMT patients. In this study, we identified a functional SNP rs55944529 in the DAO gene that reveals a modest but significant association with the methadone dosage in the recessive model of analysis (P = 0.003) and plasma concentrations (P = 0.003) in MMT patients. However, it did not show association with plasma methadone concentration in multiple linear regression analysis. It is also associated with the methadone adverse reactions of dry mouth (P = 0.002), difficulty with urination (P = 0.0003) in the dominant model, and the withdrawal symptoms of yawning (P = 0.005) and gooseflesh skin (P = 0.004) in the recessive model. Our results suggest a role of the indirect regulatory mechanisms of the NMDA reporter, possibly via the DAO genetic variants, in the methadone dose and some adverse reactions in MMT patients.
Subject(s)
Heroin , Methadone , Humans , Methadone/adverse effects , N-Methylaspartate/genetics , Oxidoreductases/genetics , Polymorphism, Single Nucleotide , Receptors, N-Methyl-D-Aspartate/geneticsABSTRACT
BACKGROUND AND AIMS: Surgical resection is the primary treatment for HCC; however, it is associated with a high rate of recurrence and death. We conducted this phase 2 study to investigate the efficacy and safety of postoperative intensity-modulated radiotherapy (IMRT) for HCC after narrow-margin hepatectomy. APPROACH AND RESULTS: We designed a single-arm, prospective phase 2 trial to evaluate overall survival (OS), disease-free survival (DFS), recurrence patterns, and toxicity in patients receiving adjuvant radiotherapy. The eligibility criteria included the following: pathological diagnosis of HCC after hepatectomy, with narrow pathological margins (< 1 cm); age > 18 years; and Eastern Cooperative Oncology Group performance status score of 0 or 1. Patients received IMRT within 4-6 weeks after surgical resection. This trial was registered at ClinicalTrials.gov (NCT01456156). Between 2008 and 2016, a total of 76 eligible patients who underwent narrow-margin resection were enrolled. The median follow-up duration was 70 months; the 3-year OS and DFS rates were 88.2% and 68.1%, respectively; and the 5-year OS and DFS rates were 72.2% and 51.6%, respectively. Intrahepatic recurrence was the primary recurrence pattern. No marginal recurrence was found. Intrahepatic, extrahepatic, and combined recurrences at the first relapse were found in 33, 5, and 1 patient, respectively. The most common radiation-related grade-3 toxicities were leukopenia (7.9%), elevated alanine aminotransferase (3.9%) and aspartate aminotransferase (2.6%) levels, and thrombocytopenia (1.3%). Classical or nonclassical radiation-induced liver disease was not noted. CONCLUSIONS: Adjuvant radiotherapy is an effective, well-tolerated, and promising adjuvant regimen in patients with HCC who have undergone narrow-margin hepatectomy. Our trial provides evidence and a rationale for planning a future phase 3 trial.