Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36680690

ABSTRACT

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Subject(s)
Nodose Ganglion , Receptors, Purinergic P2X7 , Rats , Animals , Nodose Ganglion/physiology , Vagus Nerve/physiology , Adenosine Triphosphate/pharmacology , Sensory Receptor Cells
2.
FASEB J ; 36(2): e22134, 2022 02.
Article in English | MEDLINE | ID: mdl-35061296

ABSTRACT

Astrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.


Subject(s)
Astrocytes/metabolism , Basolateral Nuclear Complex/metabolism , Connexin 43/metabolism , Fear/physiology , Memory, Short-Term/physiology , Neurotransmitter Agents/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Glutamic Acid/metabolism , Male , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Serine/metabolism
3.
Biol Res ; 56(1): 56, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37876016

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. RESULTS: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. CONCLUSIONS: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.


Subject(s)
COVID-19 , Connexin 43 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Adenosine Triphosphate
4.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806258

ABSTRACT

Connexin (Cxs) hemichannels participate in several physiological and pathological processes, but the molecular mechanisms that control their gating remain elusive. We aimed at determining the role of extracellular cysteines (Cys) in the gating and function of Cx46 hemichannels. We studied Cx46 and mutated all of its extracellular Cys to alanine (Ala) (one at a time) and studied the effects of the Cys mutations on Cx46 expression, localization, and hemichannel activity. Wild-type Cx46 and Cys mutants were expressed at comparable levels, with similar cellular localization. However, functional experiments showed that hemichannels formed by the Cys mutants did not open either in response to membrane depolarization or removal of extracellular divalent cations. Molecular-dynamics simulations showed that Cys mutants may show a possible alteration in the electrostatic potential of the hemichannel pore and an altered disposition of important residues that could contribute to the selectivity and voltage dependency in the hemichannels. Replacement of extracellular Cys resulted in "permanently closed hemichannels", which is congruent with the inhibition of the Cx46 hemichannel by lipid peroxides, through the oxidation of extracellular Cys. These results point to the modification of extracellular Cys as potential targets for the treatment of Cx46-hemichannel associated pathologies, such as cataracts and cancer, and may shed light into the gating mechanisms of other Cx hemichannels.


Subject(s)
Gap Junctions , Ion Channel Gating , Connexins/metabolism , Cysteine/metabolism , Gap Junctions/metabolism
5.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362410

ABSTRACT

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Subject(s)
Astrocytes , Connexin 43 , Rats , Animals , Connexin 43/metabolism , Astrocytes/metabolism , Receptors, GABA-A , Bicuculline/pharmacology , Animals, Newborn , Cells, Cultured , Glutamic Acid/pharmacology , gamma-Aminobutyric Acid/pharmacology , Adenosine Triphosphate/pharmacology
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555574

ABSTRACT

Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.


Subject(s)
Hypertension, Renal , Nephritis , Animals , Humans , Gap Junctions/physiology , Connexins/physiology , Angiotensin II
7.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830485

ABSTRACT

Connexins (Cxs) are a family of proteins that form two different types of ion channels: hemichannels and gap junction channels. These channels participate in cellular communication, enabling them to share information and act as a synchronized syncytium. This cellular communication has been considered a strong tumor suppressor, but it is now recognized that some type of Cxs can be pro-tumorigenic. For example, Cx46 expression is increased in human breast cancer samples and correlates with cancer stem cell (CSC) characteristics in human glioma. Thus, we explored whether Cx46 and glioma cells, can set up CSC and epithelial-to-mesenchymal transition (EMT) properties in a breast cancer cell line. To this end, we transfected MCF-7 cells with Cx46 attached to a green fluorescent protein (Cx46GFP), and we determined how its expression orchestrates both the gene-expression and functional changes associated with CSC and EMT. We observed that Cx46GFP increased Sox2, Nanog, and OCT4 mRNA levels associated with a high capacity to form monoclonal colonies and tumorspheres. Similarly, Cx46GFP increased the mRNA levels of n-cadherin, Vimentin, Snail and Zeb1 to a higher migratory and invasive capacity. Furthermore, Cx46GFP transfected in MCF-7 cells induced the release of higher amounts of VEGF, which promoted angiogenesis in HUVEC cells. We demonstrated for the first time that Cx46 modulates CSC and EMT properties in breast cancer cells and thus could be relevant in the design of future cancer therapies.


Subject(s)
Breast Neoplasms/genetics , Connexins/genetics , Epithelial-Mesenchymal Transition/genetics , Neoplastic Stem Cells/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/genetics , Human Umbilical Vein Endothelial Cells , Humans , MCF-7 Cells , Nanog Homeobox Protein/genetics , Neoplastic Stem Cells/pathology , SOXB1 Transcription Factors/genetics , Vascular Endothelial Growth Factor A/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
8.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630161

ABSTRACT

Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.


Subject(s)
Connexins/metabolism , Pre-Eclampsia/etiology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Animals , Blood Vessels/metabolism , Female , Humans , Inflammation/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy
9.
Nitric Oxide ; 86: 54-62, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30797972

ABSTRACT

Under normal conditions, connexin (Cx) hemichannels have a low open probability, which can increase under pathological conditions. Since hemichannels are permeable to relatively large molecules, their exacerbated activity has been linked to cell damage. Cx46 is highly expressed in the lens and its mutations have been associated to cataract formation, but it is unknown whether Cx46 has a role in non-genetic cataract formation (i.e. aging and diabetes). Nitric oxide (NO) is a key element in non-genetic cataract formation and Cx46 hemichannels have been shown to be sensitive to NO. The molecular mechanisms of the effects of NO on Cx46 are unknown, but are likely to result from Cx46 S-nitrosation (also known as S-nitrosylation). In this work, we found that lens opacity was correlated with Cx46 S-nitrosation in an animal model of cataract. Consistent with this result, a NO donor increased Cx46 S-nitrosation and hemichannel opening in HLE-B3 cells (cell line derived from human lens epithelial cells). Mutagenesis studies point to the cysteine located in the fourth transmembrane helix (TM4; human C212, rat C218) as the NO sensor. Electrophysiological studies performed in Xenopus oocytes revealed that rat Cx46 hemichannels are sensitive to different NO donors, and that the presence of C218 is necessary to observe the NO donors' effects. Unexpectedly, gap junctions formed by Cx46 were insensitive to NO or the reducing agent dithiothreitol. We propose that increased hemichannel opening and/or changes in their electrophysiological properties of human Cx46 due to S-nitrosation of the cysteine in TM4 could be an important factor in cataract formation.


Subject(s)
Cataract/etiology , Connexins/metabolism , Cysteine/chemistry , Nitric Oxide/metabolism , Amino Acid Sequence , Animals , Cell Line , Connexins/chemistry , Cricetulus , Gap Junctions/metabolism , Humans , Male , Membrane Potentials/physiology , Mesocricetus , Mice , Nitrosation , Protein Conformation, alpha-Helical , Protein Processing, Post-Translational , Rats, Sprague-Dawley , Sequence Alignment , Xenopus laevis , Zebrafish
10.
Biochim Biophys Acta Biomembr ; 1860(1): 91-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29017810

ABSTRACT

Connexins are membrane proteins that form hemichannels and gap junction channels at the plasma membrane. Through these channels connexins participate in autocrine and paracrine intercellular communication. Connexin-based channels are tightly regulated by membrane potential, phosphorylation, pH, redox potential, and divalent cations, among others, and the imbalance of this regulation have been linked to many acquired and genetic diseases. Concerning the redox potential regulation, the nitric oxide (NO) has been described as a modulator of the hemichannels and gap junction channels properties. However, how NO regulates these channels is not well understood. In this mini-review, we summarize the current knowledge about the effects of redox potential focused in NO on the trafficking, formation and functional properties of hemichannels and gap junction channels.


Subject(s)
Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Membrane Potentials/physiology , Nitric Oxide/metabolism , Animals , Biological Transport, Active/physiology , Humans , Oxidation-Reduction
11.
Adv Exp Med Biol ; 1071: 61-68, 2018.
Article in English | MEDLINE | ID: mdl-30357734

ABSTRACT

The carotid body (CB) is the main arterial chemoreceptor involved in oxygen sensing. Upon hypoxic stimulation, CB chemoreceptor cells release neurotransmitters, which increase the frequency of action potentials in sensory nerve fibers of the carotid sinus nerve. The identity of the molecular entity responsible for oxygen sensing is still a matter of debate; however several ion channels have been shown to be involved in this process. Connexin-based ion channels are expressed in the CB; however a definitive role for these channels in mediating CB oxygen sensitivity has not been established. To address the role of these channels, we studied the effect of blockers of connexin-based ion channels on oxygen sensitivity of the CB. A connexin43 (Cx43) hemichannel blocking agent (CHBa) was applied topically to the CB and the CB-mediated hypoxic ventilatory response (FiO2 21, 15, 10 and 5%) was measured in adult male Sprague-Dawley rats (~250 g). In normoxic conditions, CHBa had no effect on tidal volume or respiratory rate, however Cx43 hemichannels inhibition by CHBa significantly impaired the CB-mediated chemoreflex response to hypoxia. CHBa reduced both the gain of the hypoxic ventilatory response (HVR) and the maximum HVR by ~25% and ~50%, respectively. Our results suggest that connexin43 hemichannels contribute to the CB chemoreflex response to hypoxia in rats. Our results suggest that CB connexin43 hemichannels may be pharmacological targets in disease conditions characterized by CB hyperactivity.


Subject(s)
Carotid Body/physiology , Connexin 43/antagonists & inhibitors , Hypoxia , Animals , Connexin 43/physiology , Male , Rats , Rats, Sprague-Dawley
12.
J Physiol ; 595(1): 43-51, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27218485

ABSTRACT

Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.


Subject(s)
Chemoreceptor Cells/physiology , Heart Failure/physiopathology , Animals , Humans
13.
J Biol Chem ; 291(30): 15740-52, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27143357

ABSTRACT

Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity.


Subject(s)
Avian Proteins/metabolism , Connexins/metabolism , Ion Channel Gating/physiology , Membrane Potentials/physiology , Animals , Avian Proteins/genetics , Chickens , Connexins/genetics , Humans , Protein Domains , Rats , Xenopus laevis
14.
Pflugers Arch ; 468(5): 909-18, 2016 05.
Article in English | MEDLINE | ID: mdl-26769242

ABSTRACT

Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.


Subject(s)
Connexins/metabolism , Deafness/genetics , Mutation , Action Potentials , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Connexin 26 , Connexins/chemistry , Connexins/genetics , HeLa Cells , Humans , Ion Channel Gating , Xenopus
15.
BMC Cell Biol ; 17 Suppl 1: 11, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27229925

ABSTRACT

Post-translational modifications of connexins play an important role in the regulation of gap junction and hemichannel permeability. The prerequisite for the formation of functional gap junction channels is the assembly of connexin proteins into hemichannels and their insertion into the membrane. Hemichannels can affect cellular processes by enabling the passage of signaling molecules between the intracellular and extracellular space. For the intercellular communication hemichannels from one cell have to dock to its counterparts on the opposing membrane of an adjacent cell to allow the transmission of signals via gap junctions from one cell to the other. The controlled opening of hemichannels and gating properties of complete gap junctions can be regulated via post-translational modifications of connexins. Not only channel gating, but also connexin trafficking and assembly into hemichannels can be affected by post-translational changes. Recent investigations have shown that connexins can be modified by phosphorylation/dephosphorylation, redox-related changes including effects of nitric oxide (NO), hydrogen sulfide (H2S) or carbon monoxide (CO), acetylation, methylation or ubiquitination. Most of the connexin isoforms are known to be phosphorylated, e.g. Cx43, one of the most studied connexin at all, has 21 reported phosphorylation sites. In this review, we provide an overview about the current knowledge and relevant research of responsible kinases, connexin phosphorylation sites and reported effects on gap junction and hemichannel regulation. Regarding the effects of oxidants we discuss the role of NO in different cell types and tissues and recent studies about modifications of connexins by CO and H2S.


Subject(s)
Gap Junctions/metabolism , Ion Channels/metabolism , Amino Acid Sequence , Animals , Carbon Monoxide/pharmacology , Gap Junctions/drug effects , Humans , Hydrogen Sulfide/pharmacology , Ion Channels/chemistry , Oxidation-Reduction/drug effects , Phosphorylation/drug effects , Protein Kinases/metabolism
16.
BMC Cell Biol ; 17 Suppl 1: 17, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27228968

ABSTRACT

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Subject(s)
Channelopathies/metabolism , Connexins/chemistry , Connexins/metabolism , Animals , Channelopathies/genetics , Connexins/genetics , Gap Junctions/metabolism , Humans , Ion Channel Gating , Models, Molecular , Mutation/genetics
17.
J Biol Chem ; 289(52): 36150-7, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25384983

ABSTRACT

Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or "free HCs" at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions.


Subject(s)
Carbon Monoxide/pharmacology , Connexin 43/antagonists & inhibitors , Connexins/antagonists & inhibitors , Organometallic Compounds/pharmacology , Animals , Connexin 43/metabolism , Connexins/metabolism , Glutathione/pharmacology , HeLa Cells , Humans , MCF-7 Cells , Membrane Potentials , Protein Carbonylation , Reducing Agents/pharmacology , Xenopus laevis
18.
IUBMB Life ; 67(6): 428-37, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26031630

ABSTRACT

Carbon monoxide (CO) is a gaseous transmitter that is known to be involved in several physiological processes, but surprisingly it is also becoming a promising molecule to treat several pathologies including stroke and cancer. CO can cross the plasma membrane and activate guanylate cyclase, increasing the cGMP concentration and activating some kinases, including PKG. The other mechanism of action involves induction of protein carbonylation. CO is known to directly and indirectly modulate the function of ion channels at the plasma membrane, which in turn have important repercussions in the cellular behavior. One group of these channels is hemichannels, which are formed by proteins known as connexins (Cxs). Hemichannel allows not only the flow of ions through their pore but also the release of molecules such as ATP and glutamate. Therefore, their modulation not only impacts cellular function but also cellular communication, having the capability to affect tissular behavior. Here, we review the most recent results regarding the effect of CO on Cx hemichannels and their possible repercussions on pathologies.


Subject(s)
Carbon Monoxide/metabolism , Connexins/metabolism , Brain Ischemia/metabolism , Carbon Monoxide/therapeutic use , Cell Membrane/metabolism , Connexins/chemistry , Gap Junctions/metabolism , Humans , Ion Channels/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction
19.
Biochim Biophys Acta ; 1828(3): 1169-79, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23261389

ABSTRACT

Connexin hemichannel (Cx HC) opening is involved in physiological and pathological processes, allowing the cellular release of autocrine/paracrine signaling molecules. Linoleic acid (LA) is known to modulate the functional state of connexin46 (Cx46) HCs. However, the molecular mechanism involved in this effect, or whether LA affects HCs constituted of other connexins, remains unknown. Here, we report the effects of LA on HCs in HeLa cells that express Cx26, one of the main Cxs in the cochlear sensory epithelium. Cx26 HC activity (dye uptake) was increased in a concentration-dependent manner by bath application of LA and inhibited by HC blockers. Moreover, intracellular BAPTA, a Ca(2+) chelator, and PI3K/AKT inhibitors were found to reduce the LA-induced Cx26 HC opening, suggesting that the LA effect is mediated by an increase of free intracellular Ca(2+) concentration and activation of the PI3K/Akt-dependent pathway. The LA-induced increase in free intracellular Ca(2+) concentration was mainly due to Ca(2+) influx through Cx26 HCs. In addition, the involvement of SH groups was ruled out, because dithiothreitol (DTT) did not block the LA-induced dye uptake. LA also increased the membrane current mediated by Cx26 HCs expressed in Xenopus oocytes and the dye uptake in HeLa cells expressing Cxs 32, 43 or 45. Since LA is an essential polyunsaturated fatty acid, its effect on HCs might be relevant to cell growth as well as to cellular functions of differentiated cells such as audition.


Subject(s)
Calcium/chemistry , Connexins/chemistry , Linoleic Acid/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Biotinylation , Blotting, Western , Calcium/metabolism , Calcium Signaling , Connexin 26 , Dithiothreitol/pharmacology , Dose-Response Relationship, Drug , Fatty Acids, Unsaturated/metabolism , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Oocytes/metabolism , Protein Structure, Tertiary , Time Factors , Xenopus
20.
Methods Mol Biol ; 2801: 125-134, 2024.
Article in English | MEDLINE | ID: mdl-38578418

ABSTRACT

Connexins (Cxs) are transmembrane proteins which form hemichannels and gap junction channels at the plasma membrane. These channels allow the exchange of ions and molecules between the intra- and extracellular space and between cytoplasm of adjacent cells, respectively. The channel function of Cx assemblies has been extensively studied; however, "noncanonical" functions have emerged in the last few decades and have capture the attentions of many researchers, including the role of some Cxs as gene modulators or transcription factors. In this chapter, we describe a protocol to study the interaction of Cx46 with DNA in HeLa cells. These methods can facilitate understanding the role of Cxs in physiological processes and pathological mechanisms, including, for example, the contribution of Cx46 in maintaining stemness of glioma cancer stem cells.


Subject(s)
Connexins , Ion Channels , Humans , Connexins/genetics , Connexins/metabolism , HeLa Cells , Gap Junctions/metabolism , DNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL