Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Publication year range
1.
Mov Disord ; 37(1): 137-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34596301

ABSTRACT

BACKGROUND: Monogenic causes of isolated dystonia are heterogeneous. Assembling cohorts of affected individuals sufficiently large to establish new gene-disease relationships can be challenging. OBJECTIVE: We sought to expand the catalogue of monogenic etiologies for isolated dystonia. METHODS: After the discovery of a candidate variant in a multicenter exome-sequenced cohort of affected individuals with dystonia, we queried online platforms and genomic data repositories worldwide to identify subjects with matching genotypic profiles. RESULTS: Seven different biallelic loss-of-function variants in AOPEP were detected in five probands from four unrelated families with strongly overlapping phenotypes. In one proband, we observed a homozygous nonsense variant (c.1477C>T [p.Arg493*]). A second proband harbored compound heterozygous nonsense variants (c.763C>T [p.Arg255*]; c.777G>A [p.Trp259*]), whereas a third proband possessed a frameshift variant (c.696_697delAG [p.Ala234Serfs*5]) in trans with a splice-disrupting alteration (c.2041-1G>A). Two probands (siblings) from a fourth family shared compound heterozygous frameshift alleles (c.1215delT [p.Val406Cysfs*14]; c.1744delA [p.Met582Cysfs*6]). All variants were rare and expected to result in truncated proteins devoid of functionally important amino acid sequence. AOPEP, widely expressed in developing and adult human brain, encodes a zinc-dependent aminopeptidase, a member of a class of proteolytic enzymes implicated in synaptogenesis and neural maintenance. The probands presented with disabling progressive dystonia predominantly affecting upper and lower extremities, with variable involvement of craniocervical muscles. Dystonia was unaccompanied by any additional symptoms in three families, whereas the fourth family presented co-occurring late-onset parkinsonism. CONCLUSIONS: Our findings suggest a likely causative role of predicted inactivating biallelic AOPEP variants in cases of autosomal recessive dystonia. Additional studies are warranted to understand the pathophysiology associated with loss-of-function variation in AOPEP. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Aminopeptidases , Dystonia , Dystonic Disorders , Loss of Function Mutation , Aminopeptidases/genetics , Dystonia/genetics , Dystonic Disorders/genetics , Exome , Humans , Mutation , Pedigree , Phenotype
2.
Am J Med Genet A ; 188(3): 941-947, 2022 03.
Article in English | MEDLINE | ID: mdl-34874093

ABSTRACT

SCN2A (sodium channel 2A) encodes the Nav1.2 channel protein in excitatory neurons in the brain. Nav1.2 is a critical voltage-gated sodium channel of the central nervous system. Mutations in SCN2A are responsible for a broad phenotypic spectrum ranging from autism and developmental delay to severe encephalopathy with neonatal or early infantile onset. SCN2A can be spliced into two different isoforms, a neonatal (6N) and an adult (6A) form. After birth, there is an equal or higher amount of the 6N isoform, protecting the brain from the increased neuronal excitability of the infantile brain. During postnatal development, 6N is gradually replaced by 6A. In an infant carrying the novel SCN2A mutation c.643G > A (p.Ala215Thr) only in the neonatal transcript, seizures started immediately after birth. The clinical presentation evolved from a burst-suppression pattern with 30-50 tonic seizures per day to hypsarrhythmia. The first exome analysis, focusing only on common transcripts, missed the diagnosis and delayed early therapy. A reevaluation including all transcripts revealed the SCN2A variant.


Subject(s)
Epilepsy , Spasms, Infantile , Epilepsy/genetics , Humans , Infant , Infant, Newborn , Mutation , NAV1.2 Voltage-Gated Sodium Channel/genetics , Protein Isoforms/genetics , Seizures/genetics , Spasms, Infantile/diagnosis , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics
3.
J Med Genet ; 58(4): 247-253, 2021 04.
Article in English | MEDLINE | ID: mdl-32487539

ABSTRACT

INTRODUCTION: TMEM16A is a calcium-activated chloride channel expressed in various secretory epithelia. Two siblings presented in early infancy with reduced intestinal peristalsis and recurrent episodes of haemorrhagic diarrhoea. In one of them, the episodes were characterised by hepatic pneumatosis with gas bubbles in the portal vein similar to necrotising enterocolitis of the newborn. METHODS: Exome sequencing identified a homozygous truncating pathogenic variant in ANO1. Expression analysis was performed using reverse transcription PCR, western blot and immunohistochemistry. Electrophysiological and cell biological studies were employed to characterise the effects on ion transport both in patient respiratory epithelial cells and in transfected HEK293 cells. RESULTS: The identified variant led to TMEM16A dysfunction, which resulted in abolished calcium-activated Cl- currents. Secondarily, CFTR function is affected due to the close interplay between both channels without inducing cystic fibrosis (CF). CONCLUSION: TMEM16A deficiency is a potentially fatal disorder caused by abolished calcium-activated Cl- currents in secretory epithelia. Secondary impairment of CFTR function did not cause a CF phenotyp, which may have implications for CF treatment.


Subject(s)
Anoctamin-1/genetics , Chloride Channels/genetics , Genetic Predisposition to Disease , Infant, Newborn, Diseases/genetics , Neoplasm Proteins/genetics , Anoctamin-1/deficiency , Biological Transport/genetics , Calcium/metabolism , Chloride Channels/metabolism , Chlorides/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Female , HEK293 Cells , Humans , Infant , Infant, Newborn , Infant, Newborn, Diseases/epidemiology , Infant, Newborn, Diseases/pathology , Male , Neoplasm Proteins/deficiency
4.
J Med Genet ; 58(3): 213-216, 2021 03.
Article in English | MEDLINE | ID: mdl-32332102

ABSTRACT

Newly synthesised glycoproteins enter the rough endoplasmic reticulum through a translocation pore. The translocon associated protein (TRAP) complex is located close to the pore. In a patient with a homozygous start codon variant in TRAPγ (SSR3), absence of TRAPγ causes disruption of the TRAP complex, impairs protein translocation into the endoplasmic reticulum and affects transport, for example, into the brush-border membrane. Furthermore, we observed an unbalanced non-occupancy of N-glycosylation sites. The major clinical features are intrauterine growth retardation, facial dysmorphism, congenital diarrhoea, failure to thrive, pulmonary disease and severe psychomotor disability.


Subject(s)
Endoplasmic Reticulum, Rough/genetics , Fetal Growth Retardation/genetics , Glycoproteins/genetics , Tartrate-Resistant Acid Phosphatase/genetics , Child , Child, Preschool , Diarrhea/genetics , Diarrhea/pathology , Failure to Thrive/genetics , Failure to Thrive/pathology , Female , Fetal Growth Retardation/pathology , Glycoproteins/biosynthesis , Glycosylation , Humans , Infant , Infant, Newborn , Lung Diseases/genetics , Lung Diseases/pathology , Male , Psychomotor Disorders/genetics , Psychomotor Disorders/pathology , Tartrate-Resistant Acid Phosphatase/deficiency
5.
Am J Med Genet A ; 185(3): 930-936, 2021 03.
Article in English | MEDLINE | ID: mdl-33369099

ABSTRACT

DNA damage repair is a pivotal mechanism in life. The nucleotide excision repair pathway protects the cells against DNA damage and involves XPD, an ATP dependent helicase that is part of the multisubunit protein complex TFIIH. XPD is encoded by the excision repair cross-complementation group 2 gene (ERCC2). Only three patients with cerebro-oculo-facio-skeletal syndrome (COFS), caused by mutations in ERCC2, have been published so far. This report describes a boy with the homozygous amino acid change p.Gly47Arg in XPD. He presented with profound microcephaly, psychomotor retardation, failure to thrive, cutaneous photosensitivity, a bilateral hearing deficit and optic atrophy, thrombocytopenia, and recurrent episodes of pneumonia. We report the first homozygous occurrence of the pathogenic variant Gly47Arg in the ERCC2 gene. Occurring homozygous, this variant was associated with COFS syndrome, leading to early death of the patient at the age of 21 months.


Subject(s)
Abnormalities, Multiple/genetics , Cockayne Syndrome/genetics , Mutation, Missense , Point Mutation , Xeroderma Pigmentosum Group D Protein/genetics , Amino Acid Substitution , Consanguinity , Cryptorchidism/genetics , Cytomegalovirus Infections/complications , Developmental Disabilities/genetics , Disease Susceptibility , Fatal Outcome , Homozygote , Humans , Infant, Newborn , Liver Cirrhosis/genetics , Male , Psychomotor Disorders/genetics , Syndrome , Xeroderma Pigmentosum Group D Protein/deficiency
6.
Liver Int ; 41(10): 2427-2432, 2021 10.
Article in English | MEDLINE | ID: mdl-34358398

ABSTRACT

Cryptogenic elevation of transaminases in childhood can in a few instances be linked to rare hereditary causes. In this paper, a 7-year old girl is reported who was diagnosed with elevated transaminases of unknown origin since infancy. A liver biopsy showed bridging fibrosis, pale eosinophilic intracytoplasmic hepatocellular inclusions and enlarged endoplasmic reticulum cisternae in the hepatocytes. Whole-exome sequencing revealed a homozygous in-frame deletion of 3 base pairs in the haptoglobin gene. The patient is anhaptoglobinemic measured by standard laboratory turbidometry, which was confirmed by Western Blotting and thereby shown to affect both protein chains of haptoglobin. A polyclonal antibody revealed haptoglobin retention in hepatocytes suggesting a defect in haptoglobin secretion. A novel, previously unknown haptoglobin storage disease is suspected to be the reason for the elevated liver enzymes and tissue abnormalities in this patient. The pathophysiology appears to be similar to endoplasmic reticulum storage diseases like alpha-1-antitrypsin-deficiency.


Subject(s)
Haptoglobins , alpha 1-Antitrypsin Deficiency , Child , Female , Haptoglobins/genetics , Hepatocytes/pathology , Homozygote , Humans , Liver/pathology , Liver Cirrhosis/pathology , alpha 1-Antitrypsin Deficiency/pathology
7.
J Inherit Metab Dis ; 44(6): 1323-1329, 2021 11.
Article in English | MEDLINE | ID: mdl-34176136

ABSTRACT

3-Hydroxyisobutyric acid (3HiB) is an intermediate in the degradation of the branched-chain amino acid valine. Disorders in valine degradation can lead to 3HiB accumulation and its excretion in the urine. This article describes the first two patients with a new metabolic disorder, 3-hydroxyisobutyrate dehydrogenase (HIBADH) deficiency, its phenotype and its treatment with a low-valine diet. The detected mutation in the HIBADH gene leads to nonsense-mediated mRNA decay of the mutant allele and to a complete loss-of-function of the enzyme. Under strict adherence to a low-valine diet a rapid decrease of 3HiB excretion in the urine was observed. Due to limited patient numbers and intrafamilial differences in phenotype with one affected and one unaffected individual, the clinical phenotype of HIBADH deficiency needs further evaluation.


Subject(s)
Alcohol Oxidoreductases/deficiency , Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Hydroxybutyrates/urine , Alcohol Oxidoreductases/metabolism , Child, Preschool , Diagnosis, Differential , Female , Humans , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Infant , Male , Valine/metabolism
8.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576089

ABSTRACT

SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.


Subject(s)
Mitochondrial Membrane Transport Proteins/deficiency , Uridine/therapeutic use , Child , Child, Preschool , Female , Growth and Development/drug effects , Humans , Infant , Infant, Newborn , Mitochondrial Membrane Transport Proteins/genetics , Mutant Proteins/metabolism , Protein Transport/drug effects , Thyrotropin/metabolism , Uridine/pharmacology
9.
Mol Genet Metab ; 131(4): 405-417, 2020 12.
Article in English | MEDLINE | ID: mdl-33257258

ABSTRACT

Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Subject(s)
Glycine/blood , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/blood , Niemann-Pick Disease, Type C/genetics , 2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , Bile Acids and Salts/blood , Biomarkers/blood , Female , Glycine/analogs & derivatives , Glycine/isolation & purification , Humans , Male , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/pathology , Tandem Mass Spectrometry , Vesicular Transport Proteins/genetics
10.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Article in English | MEDLINE | ID: mdl-32033912

ABSTRACT

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Phosphorylcholine/blood , Phosphorylcholine/cerebrospinal fluid , Adolescent , Adult , Aged , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cats , Child , Child, Preschool , Chromatography, Liquid , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Sensitivity and Specificity , Severity of Illness Index , Tandem Mass Spectrometry , Treatment Outcome , Young Adult
11.
J Inherit Metab Dis ; 43(6): 1370-1381, 2020 11.
Article in English | MEDLINE | ID: mdl-32852845

ABSTRACT

Congenital disorders of glycosylation (CDG) are a growing group of inborn metabolic disorders with multiorgan presentation. SLC39A8-CDG is a severe subtype caused by biallelic mutations in the manganese transporter SLC39A8, reducing levels of this essential cofactor for many enzymes including glycosyltransferases. The current diagnostic standard for disorders of N-glycosylation is the analysis of serum transferrin. Exome and Sanger sequencing were performed in two patients with severe neurodevelopmental phenotypes suggestive of CDG. Transferrin glycosylation was analyzed by high-performance liquid chromatography (HPLC) and isoelectric focusing in addition to comprehensive N-glycome analysis using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry (MS). Atomic absorption spectroscopy was used to quantify whole blood manganese levels. Both patients presented with a severe, multisystem disorder, and a complex neurological phenotype. Magnetic resonance imaging (MRI) revealed a Leigh-like syndrome with bilateral T2 hyperintensities of the basal ganglia. In patient 1, exome sequencing identified the previously undescribed homozygous variant c.608T>C [p.F203S] in SLC39A8. Patient 2 was found to be homozygous for c.112G>C [p.G38R]. Both individuals showed a reduction of whole blood manganese, though transferrin glycosylation was normal. N-glycome using MALDI-TOF MS identified an increase of the asialo-agalactosylated precursor N-glycan A2G1S1 and a decrease in bisected structures. In addition, analysis of heterozygous CDG-allele carriers identified similar but less severe glycosylation changes. Despite its reliance as a clinical gold standard, analysis of transferrin glycosylation cannot be categorically used to rule out SLC39A8-CDG. These results emphasize that SLC39A8-CDG presents as a spectrum of dysregulated glycosylation, and MS is an important tool for identifying deficiencies not detected by conventional methods.


Subject(s)
Basal Ganglia/physiopathology , Cation Transport Proteins/genetics , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/physiopathology , Adolescent , Cation Transport Proteins/deficiency , Child , Child, Preschool , Chromatography, High Pressure Liquid , Female , Glycosylation , Humans , Infant , Magnetic Resonance Imaging , Male , Manganese/metabolism , Mass Spectrometry , Phenotype , Transferrin/analysis , Exome Sequencing , Young Adult
12.
Brain ; 142(8): 2230-2237, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31332433

ABSTRACT

Superoxide dismutase 1 (SOD1) is the principal cytoplasmic superoxide dismutase in humans and plays a major role in redox potential regulation. It catalyses the transformation of the superoxide anion (O2•-) into hydrogen peroxide. Heterozygous variants in SOD1 are a common cause of familial amyotrophic lateral sclerosis. In this study we describe the homozygous truncating variant c.335dupG (p.C112Wfs*11) in SOD1 that leads to total absence of enzyme activity. The resulting phenotype is severe and marked by progressive loss of motor abilities, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Heterozygous carriers have a markedly reduced enzyme activity when compared to wild-type controls but show no overt neurologic phenotype. These results are in contrast with the previously proposed theory that a loss of function is the underlying mechanism in SOD1-related motor neuron disease and should be considered before application of previously proposed SOD1 silencing as a treatment option for amyotrophic lateral sclerosis.


Subject(s)
Heredodegenerative Disorders, Nervous System/genetics , Superoxide Dismutase-1/deficiency , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis , Child , Child, Preschool , Frameshift Mutation , Humans , Male , Pedigree , Syndrome
13.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26833332

ABSTRACT

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Subject(s)
Golgi Apparatus/genetics , Homeostasis , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Amino Acid Sequence , Child , Child, Preschool , Cloning, Molecular , Endoplasmic Reticulum/metabolism , Exome , Female , Fibroblasts/cytology , Glycosylation , Golgi Apparatus/metabolism , HeLa Cells , Heterozygote , Humans , Infant , Male , Molecular Sequence Data , Pedigree , Phenotype , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Am J Med Genet A ; 179(7): 1371-1375, 2019 07.
Article in English | MEDLINE | ID: mdl-31075182

ABSTRACT

Accurate glycosylation of proteins is essential for their function and their intracellular transport. Numerous diseases have been described, where either glycosylation or intracellular transport of proteins is impaired. Coat protein I (COPI) is involved in anterograde and retrograde transport of proteins between endoplasmic reticulum and Golgi, where glycosylation takes place, but no association of defective COPI proteins and glycosylation defects has been described so far. We identified a patient whose phenotype at a first glance was reminiscent of PGM1 deficiency, a disease that also affects N-glycosylation of proteins. More detailed analyses revealed a different disease with a glycosylation deficiency that was only detectable during episodes of acute illness of the patient. Trio-exome analysis revealed a de novo loss-of-function mutation in ARCN1, coding for the delta-COP subunit of COPI. We hypothesize that the capacity of flow through Golgi is reduced by this defect and at high protein synthesis rates, this bottleneck also manifests as transient glycosylation deficiency.


Subject(s)
Coat Protein Complex I/genetics , Loss of Function Mutation , Glycosylation , Humans , Infant , Male
15.
Am J Hum Genet ; 97(6): 894-903, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26637979

ABSTRACT

SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably ß-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders.


Subject(s)
Cation Transport Proteins/genetics , Congenital Disorders of Glycosylation/genetics , Dwarfism/genetics , Manganese/blood , Spasms, Infantile/genetics , Amino Acid Sequence , Carbohydrate Sequence , Cation Transport Proteins/deficiency , Cations, Divalent , Congenital Disorders of Glycosylation/blood , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/diet therapy , Dwarfism/blood , Dwarfism/complications , Dwarfism/diet therapy , Female , Galactose/therapeutic use , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Infant , Ion Transport , Manganese/deficiency , Molecular Sequence Data , Mutation , Pedigree , Sequence Alignment , Spasms, Infantile/blood , Spasms, Infantile/complications , Spasms, Infantile/diet therapy
16.
Genet Med ; 20(2): 259-268, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28749473

ABSTRACT

PurposeSLC39A8 deficiency is a severe inborn error of metabolism that is caused by impaired function of manganese metabolism in humans. Mutations in SLC39A8 lead to impaired function of the manganese transporter ZIP8 and thus manganese deficiency. Due to the important role of Mn2+ as a cofactor for a variety of enzymes, the resulting phenotype is complex and severe. The manganese-dependence of ß-1,4-galactosyltransferases leads to secondary hypoglycosylation, making SLC39A8 deficiency both a disorder of trace element metabolism and a congenital disorder of glycosylation. Some hypoglycosylation disorders have previously been treated with galactose administration. The development of an effective treatment of the disorder by high-dose manganese substitution aims at correcting biochemical, and hopefully, clinical abnormalities.MethodsTwo SCL39A8 deficient patients were treated with 15 and 20 mg MnSO4/kg bodyweight per day. Glycosylation and blood manganese were monitored closely. In addition, magnetic resonance imaging was performed to detect potential toxic effects of manganese.ResultsAll measured enzyme dysfunctions resolved completely and considerable clinical improvement regarding motor abilities, hearing, and other neurological manifestations was observed.ConclusionHigh-dose manganese substitution was effective in two patients with SLC39A8 deficiency. Close therapy monitoring by glycosylation assays and blood manganese measurements is necessary to prevent manganese toxicity.


Subject(s)
Cation Transport Proteins/deficiency , Genetic Association Studies , Genetic Predisposition to Disease , Alleles , Biomarkers , Dietary Supplements , Electroencephalography , Female , Genetic Association Studies/methods , Glycosylation/drug effects , Humans , Magnetic Resonance Imaging , Manganese/administration & dosage , Manganese/adverse effects , Manganese/therapeutic use , Mutation , Phenotype , Treatment Outcome
17.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24499211

ABSTRACT

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Subject(s)
Glucosephosphates/genetics , Glycogen Storage Disease/genetics , Phenotype , Phosphoglucomutase/genetics , Galactose/therapeutic use , Genes, Recessive , Glucose/metabolism , Glucosephosphates/metabolism , Glycogen Storage Disease/diet therapy , Glycogen Storage Disease/metabolism , Glycoproteins/biosynthesis , Glycosylation , Humans , Male , Mutation , Phosphoglucomutase/metabolism , RNA, Messenger/analysis
18.
Am J Hum Genet ; 93(4): 727-34, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24035193

ABSTRACT

In guanosine diphosphate (GDP)-mannose pyrophosphorylase A (GMPPA), we identified a homozygous nonsense mutation that segregated with achalasia and alacrima, delayed developmental milestones, and gait abnormalities in a consanguineous Pakistani pedigree. Mutations in GMPPA were subsequently found in ten additional individuals from eight independent families affected by the combination of achalasia, alacrima, and neurological deficits. This autosomal-recessive disorder shows many similarities with triple A syndrome, which is characterized by achalasia, alacrima, and variable neurological deficits in combination with adrenal insufficiency. GMPPA is a largely uncharacterized homolog of GMPPB. GMPPB catalyzes the formation of GDP-mannose, which is an essential precursor of glycan moieties of glycoproteins and glycolipids and is associated with congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-dystroglycan. Surprisingly, GDP-mannose pyrophosphorylase activity was unchanged and GDP-mannose levels were strongly increased in lymphoblasts of individuals with GMPPA mutations. This suggests that GMPPA might serve as a GMPPB regulatory subunit mediating feedback inhibition of GMPPB instead of displaying catalytic enzyme activity itself. Thus, a triple-A-like syndrome can be added to the growing list of congenital disorders of glycosylation, in which dysregulation rather than mere enzyme deficiency is the basal pathophysiological mechanism.


Subject(s)
Codon, Nonsense , Genes, Recessive/genetics , Guanosine Diphosphate Mannose/genetics , Intellectual Disability/genetics , Nucleotidyltransferases/genetics , Adolescent , Adrenal Insufficiency/genetics , Adult , Child , Consanguinity , Esophageal Achalasia/genetics , Eye Diseases, Hereditary/genetics , Glycosylation , Guanosine Diphosphate Mannose/metabolism , Homozygote , Humans , Intellectual Disability/enzymology , Lacrimal Apparatus Diseases/genetics , Nervous System Diseases/genetics , Nucleotidyltransferases/metabolism , Pedigree , Young Adult
19.
Am J Med Genet A ; 170(12): 3319-3322, 2016 12.
Article in English | MEDLINE | ID: mdl-27626616

ABSTRACT

In recent years, many mutations have been identified that affect the biosynthesis of the glycosylphosphatidylinositol anchor, a biomolecule that attaches surface molecules to cell membranes. Here, we present two second-degree cousins with unexplained patterns of seizures. Next-generation sequencing identified the homozygous c.460A>G; p.(R154G) PIGW mutation in both patients. Transfection of the mutated allele into Pigw-defective CHO cells indicated impaired enzymatic activity of the mutated PIGW product. Alkaline phosphatase did not exceed the upper normal range and flow cytometry of CD16, CD24, and CD66c on granulocytes showed subtle changes of the cellular expression of the glycosylphosphatidylinositol-anchored proteins. The patients' phenotype is therefore remarkably different from the phenotype of the only other described individual with PIGW mutations. Patients might therefore be missed when relying on traditional flow cytometry of glycosylphosphatidylinositol-anchored proteins only and we suggest that glycosylphosphatidylinositol-deficiency should be considered even with patients not showing the typical clinical phenotypes. © 2016 Wiley Periodicals, Inc.


Subject(s)
Genetic Association Studies , Glycosylphosphatidylinositols/deficiency , Mannosyltransferases/genetics , Mutation , Phenotype , Consanguinity , DNA Mutational Analysis , Electroencephalography , Female , Glycosylphosphatidylinositols/genetics , Homozygote , Humans , Infant , Male , Physical Examination , Seizures
20.
Alcohol Alcohol ; 51(2): 148-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26333807

ABSTRACT

AIMS: Elevated Carbohydrate-deficient transferrin (CDT) levels are used as a biomarker in order to screen for chronic alcohol abuse. Transferrin (Tf) variants can impair methods to measure elevated CDT levels such as high-performance liquid chromatography (HPLC). We present a Tf variant affecting the second glycosylation site of Tf and the complications it causes in diagnosing alcoholism. METHODS: A blood sample from a patient with suspected alcohol abuse was analyzed with HPLC, isoelectric focusing, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), immunoprecipitation and SDS-Page. Sanger sequencing of Tf was performed to detect Tf mutations. RESULTS: HPLC, SDS-Page and IEF showed a distinctly increased disialo-Tf fraction while the tetrasialo-Tf fraction was decreased, ESI-TOF-MS confirmed these results. Sanger sequencing revealed the Tf mutation c.1889 A>C, deleting a Tf glycosylations site and thereby causing elevated disialo-Tf levels. CONCLUSIONS: Transferrin mutations can severely impair the diagnostics of chronic alcohol abuse by causing false positive results. This has to be considered when CDT screening is used to detect alcoholism.


Subject(s)
Alcoholism/diagnosis , Alcoholism/genetics , Genetic Variation/genetics , Mutation/genetics , Transferrin/genetics , Biomarkers/analysis , Chromatography, High Pressure Liquid/methods , Humans , Spectrometry, Mass, Electrospray Ionization/methods , Transferrin/analogs & derivatives , Transferrin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL