Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS Pathog ; 17(6): e1009319, 2021 06.
Article in English | MEDLINE | ID: mdl-34143852

ABSTRACT

Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella.


Subject(s)
Salmonella paratyphi A/pathogenicity , Salmonella typhi/pathogenicity , Type III Secretion Systems/metabolism , Adaptation, Physiological/physiology , Animals , Cell Proliferation , HeLa Cells , Humans , Mice , RAW 264.7 Cells , Salmonella paratyphi A/metabolism , Salmonella typhi/metabolism , Single-Cell Analysis , U937 Cells , Virulence Factors/metabolism
2.
PLoS Pathog ; 16(7): e1008220, 2020 07.
Article in English | MEDLINE | ID: mdl-32658937

ABSTRACT

The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/physiology , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Endosomes/metabolism , Endosomes/microbiology , HeLa Cells , Humans , Lysosomes/metabolism , Lysosomes/microbiology , RNA, Small Interfering
3.
Int Immunol ; 33(9): 479-490, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34161582

ABSTRACT

RNase T2, a ubiquitously expressed RNase, degrades RNAs in the endosomal compartments. RNA sensors, double-stranded RNA (dsRNA)-sensing Toll-like receptor 3 (TLR3) and single-stranded RNA (ssRNA)-sensing TLR7, are localized in the endosomal compartment in mouse macrophages. We here studied the role of RNase T2 in TLR3 and TLR7 responses in macrophages. Macrophages expressed RNase T2 and a member of the RNase A family RNase 4. RNase T2 was also expressed in plasmacytoid and conventional dendritic cells. Treatment with dsRNAs or type I interferon (IFN) up-regulated expression of RNase T2 but not RNase 4. RNase T2-deficiency in macrophages up-regulated TLR3 responses but impaired TLR7 responses. Mechanistically, RNase T2 degraded both dsRNAs and ssRNAs in vitro, and its mutants showed a positive correlation between RNA degradation and the rescue of altered TLR3 and TLR7 responses. H122A and C188R RNase T2 mutations, not H69A and E118V mutations, impaired both RNA degradation and the rescue of altered TLR3 and TLR7 responses. RNase T2 in bone marrow-derived macrophages was broadly distributed from early endosomes to lysosomes, and colocalized with the internalized TLR3 ligand poly(I:C). These results suggest that RNase T2-dependent RNA degradation in endosomes/lysosomes negatively and positively regulates TLR3 and TLR7 responses, respectively, in macrophages.


Subject(s)
Endoribonucleases/metabolism , Endosomes/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , RNA, Double-Stranded/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 7/metabolism , Animals , Cell Line , Cytokines/metabolism , Dendritic Cells/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Mice , Mice, Inbred C57BL
4.
Mol Cell Proteomics ; 19(5): 900-912, 2020 05.
Article in English | MEDLINE | ID: mdl-32102972

ABSTRACT

Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella.


Subject(s)
Adaptation, Physiological , Host-Pathogen Interactions , Macrophages/microbiology , Proteomics , Salmonella enterica/metabolism , Animals , Epithelial Cells/metabolism , Epithelial Cells/microbiology , HeLa Cells , Humans , Membrane Proteins/metabolism , Membranes , Mice , Proteome/metabolism , RAW 264.7 Cells
5.
PLoS Pathog ; 15(4): e1007741, 2019 04.
Article in English | MEDLINE | ID: mdl-31009521

ABSTRACT

Intracellular Salmonella enterica serovar Typhimurium (STM) deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) for the massive remodeling of the endosomal system for host cells. This activity results in formation of an extensive interconnected tubular network of Salmonella-induced filaments (SIFs) connected to the Salmonella-containing vacuole (SCV). Such network is absent in cells infected with SPI2-T3SS-deficient mutant strains such as ΔssaV. A tubular network with reduced dimensions is formed if SPI2-T3SS effector protein SseF is absent. Previous single cell live microscopy-based analyses revealed that intracellular proliferation of STM is directly correlated to the ability to transform the host cell endosomal system into a complex tubular network. This network may also abrogate host defense mechanisms such as delivery of antimicrobial effectors to the SCV. To test the role of SIFs in STM patho-metabolism, we performed quantitative comparative proteomics of STM recovered from infected murine macrophages. We infected RAW264.7 cells with STM wild type (WT), ΔsseF or ΔssaV strains, recovered bacteria 12 h after infection and determined proteome compositions. Increased numbers of proteins characteristic for nutritional starvation were detected in STM ΔsseF and ΔssaV compared to WT. In addition, STM ΔssaV, but not ΔsseF showed signatures of increased exposure to stress by antimicrobial defenses, in particular reactive oxygen species, of the host cells. The proteomics analyses presented here support and extend the role of SIFs for the intracellular lifestyle of STM. We conclude that efficient manipulation of the host cell endosomal system by effector proteins of the SPI2-T3SS contributes to nutrition, as well as to resistance against antimicrobial host defense mechanisms.


Subject(s)
Antioxidants/metabolism , Bacterial Proteins/metabolism , Macrophages/metabolism , Proteome/analysis , Proteomics/methods , Salmonella typhi/metabolism , Typhoid Fever/metabolism , Animals , Cells, Cultured , Computational Biology , Genomic Islands , Macrophages/microbiology , Mice , Protein Interaction Maps , Typhoid Fever/microbiology
6.
Int Immunol ; 32(12): 785-798, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32840578

ABSTRACT

Toll-like receptors (TLRs) impact myeloid cell responsiveness to environmental cues such as pathogen components and metabolites. Although TLR protein expression in monocytes and tissue macrophages is thought to be optimized for microenvironments in each tissue, a comprehensive study has not been reported. We here examined protein expression of endogenous TLRs in tissue-resident myeloid cells. Neutrophils in peripheral blood, spleen, liver and lung expressed TLR2, TLR4 and TLR5 in all tissues. Ly6C+ MHC II‒ classical monocytes mature into Ly6C‒ MHC II+ monocyte-derived dendritic cells (moDCs) or Ly6C‒ MHC II‒ patrolling monocytes. These subsets were found in all the tissues studied. TLR2 and TLR4 were displayed on all of these subsets, regardless of location. In contrast, expression of endosomal TLRs did vary with tissues and subsets. moDCs expressed TLR9, but much less TLR7. In contrast, TLR7, not TLR3 or TLR9, was highly expressed in classical and patrolling monocytes. Tissue macrophages such as red pulp macrophages in the spleen, Kupffer cells in the liver, microglia in the brain, alveolar macrophages in the lung and adipose tissue macrophages all expressed TLR2, TLR4 and TLR3. TLR7 was also expressed in these tissue macrophages except Kupffer cells in the liver. TLR9 expression in tissue macrophages was much lower or hard to detect. These results suggest that expression of endosomal TLRs in myeloid cells is influenced by their differentiation status and tissue-specific microenvironments.


Subject(s)
Endosomes/immunology , Macrophages/immunology , Monocytes/immunology , Toll-Like Receptors/immunology , Animals , Cells, Cultured , Mice , Toll-Like Receptors/genetics
7.
Angew Chem Int Ed Engl ; 57(3): 836-840, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29194875

ABSTRACT

The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq-related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC-1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time.


Subject(s)
Depsipeptides/biosynthesis , Depsipeptides/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Insect Proteins/metabolism , Signal Transduction/drug effects , Animals , Bombyx/metabolism , Chromosomes, Artificial, Bacterial , Computational Biology , Depsipeptides/metabolism , Escherichia coli/genetics , Gene Transfer Techniques , HEK293 Cells , Humans , Multigene Family , Peptide Synthases/genetics , Primulaceae/chemistry , Sf9 Cells , Tandem Mass Spectrometry
8.
mSphere ; 4(6)2019 12 11.
Article in English | MEDLINE | ID: mdl-31826974

ABSTRACT

The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (ΔfumABC) elicited a unique metabolic profile. Alongside fumarate, S Typhimurium ΔfumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S Typhimurium and cellular functions and virulence.IMPORTANCE We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism.


Subject(s)
Carbon/metabolism , Citric Acid Cycle , Fumarates/metabolism , Host-Pathogen Interactions , Locomotion , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Fumarate Hydratase/deficiency , Glycolysis , Macrophages/immunology , Macrophages/microbiology , Metabolic Flux Analysis , Metabolism, Inborn Errors , Metabolome , Muscle Hypotonia , Pentose Phosphate Pathway , Phagocytosis , Proteome , Psychomotor Disorders , Salmonella typhimurium/enzymology , Salmonella typhimurium/immunology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL