Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Behav Immun ; 120: 557-570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972487

ABSTRACT

Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.


Subject(s)
Ascorbic Acid , Microglia , Sodium-Coupled Vitamin C Transporters , Animals , Sodium-Coupled Vitamin C Transporters/metabolism , Sodium-Coupled Vitamin C Transporters/genetics , Microglia/metabolism , Mice , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Mice, Transgenic , Mice, Inbred C57BL , Neuroinflammatory Diseases/metabolism , Male , Brain/metabolism , Neurons/metabolism , Brain Concussion/metabolism , Cell Line
2.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38388423

ABSTRACT

Electroencephalography (EEG) is an indispensable tool in epilepsy, sleep, and behavioral research. In rodents, EEG recordings are typically performed with metal electrodes that traverse the skull into the epidural space. In addition to requiring major surgery, intracranial EEG is difficult to perform for more than a few electrodes, is time-intensive, and confounds experiments studying traumatic brain injury. Here, we describe an open-source cost-effective refinement of this technique for chronic mouse EEG recording. Our alternative two-channel (EEG2) and sixteen-channel high-density EEG (HdEEG) arrays use electrodes made of the novel, flexible 2D nanomaterial titanium carbide (Ti3C2T x ) MXene. The MXene electrodes are placed on the surface of the intact skull and establish an electrical connection without conductive gel or paste. Fabrication and implantation times of MXene EEG electrodes are significantly shorter than the standard approach, and recorded resting baseline and epileptiform EEG waveforms are similar to those obtained with traditional epidural electrodes. Applying HdEEG to a mild traumatic brain injury (mTBI) model in mice of both sexes revealed that mTBI significantly increased spike-wave discharge (SWD) preictal network connectivity with frequencies of interest in the ß-spectral band (12-30 Hz). These findings indicate that the fabrication of MXene electrode arrays is a cost-effective, efficient technology for multichannel EEG recording in mice that obviates the need for skull-penetrating surgery. Moreover, increased preictal ß-frequency network connectivity may contribute to the development of early post-mTBI SWDs.


Subject(s)
Brain Concussion , Brain , Nitrites , Transition Elements , Male , Female , Mice , Animals , Electroencephalography/methods , Electrodes , Skull
3.
Neural Regen Res ; 20(2): 489-490, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819061
SELECTION OF CITATIONS
SEARCH DETAIL