Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Cell ; 173(2): 355-370.e14, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625052

ABSTRACT

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.


Subject(s)
Germ Cells/metabolism , Neoplasms/pathology , DNA Copy Number Variations , Databases, Genetic , Gene Deletion , Gene Frequency , Genetic Predisposition to Disease , Genotype , Germ Cells/cytology , Germ-Line Mutation , Humans , Loss of Heterozygosity/genetics , Mutation, Missense , Neoplasms/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-ret/genetics , Tumor Suppressor Proteins/genetics
2.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29628290

ABSTRACT

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Subject(s)
Genomics/methods , Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Macrophages/immunology , Male , Middle Aged , Neoplasms/classification , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Th1-Th2 Balance/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology , Wound Healing/genetics , Wound Healing/immunology , Young Adult
5.
BMC Genomics ; 19(1): 536, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30005633

ABSTRACT

BACKGROUND: Alternative polyadenylation (APA) results in messenger RNA molecules with different 3' untranslated regions (3' UTRs), affecting the molecules' stability, localization, and translation. APA is pervasive and implicated in cancer. Earlier reports on APA focused on 3' UTR length modifications and commonly characterized APA events as 3' UTR shortening or lengthening. However, such characterization oversimplifies the processing of 3' ends of transcripts and fails to adequately describe the various scenarios we observe. RESULTS: We built a cloud-based targeted de novo transcript assembly and analysis pipeline that incorporates our previously developed cleavage site prediction tool, KLEAT. We applied this pipeline to elucidate the APA profiles of 114 genes in 9939 tumor and 729 tissue normal samples from The Cancer Genome Atlas (TCGA). The full set of 10,668 RNA-Seq samples from 33 cancer types has not been utilized by previous APA studies. By comparing the frequencies of predicted cleavage sites between normal and tumor sample groups, we identified 77 events (i.e. gene-cancer type pairs) of tumor-specific APA regulation in 13 cancer types; for 15 genes, such regulation is recurrent across multiple cancers. Our results also support a previous report showing the 3' UTR shortening of FGF2 in multiple cancers. However, over half of the events we identified display complex changes to 3' UTR length that resist simple classification like shortening or lengthening. CONCLUSIONS: Recurrent tumor-specific regulation of APA is widespread in cancer. However, the regulation pattern that we observed in TCGA RNA-seq data cannot be described as straightforward 3' UTR shortening or lengthening. Continued investigation into this complex, nuanced regulatory landscape will provide further insight into its role in tumor formation and development.


Subject(s)
Neoplasms/genetics , RNA, Messenger/genetics , 3' Untranslated Regions , Cloud Computing , Databases, Genetic , Fibroblast Growth Factor 2/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Recurrence, Local/genetics , Neoplasms/pathology , Polyadenylation , RNA Cleavage , RNA, Messenger/metabolism , Software
6.
Nucleic Acids Res ; 42(21): 12973-83, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25378323

ABSTRACT

Thousands of unique mutations in transcription factors (TFs) arise in cancers, and the functional and biological roles of relatively few of these have been characterized. Here, we used structure-based methods developed specifically for DNA-binding proteins to systematically predict the consequences of mutations in several TFs that are frequently mutated in cancers. The explicit consideration of protein-DNA interactions was crucial to explain the roles and prevalence of mutations in TP53 and RUNX1 in cancers, and resulted in a higher specificity of detection for known p53-regulated genes among genetic associations between TP53 genotypes and genome-wide expression in The Cancer Genome Atlas, compared to existing methods of mutation assessment. Biophysical predictions also indicated that the relative prevalence of TP53 missense mutations in cancer is proportional to their thermodynamic impacts on protein stability and DNA binding, which is consistent with the selection for the loss of p53 transcriptional function in cancers. Structure and thermodynamics-based predictions of the impacts of missense mutations that focus on specific molecular functions may be increasingly useful for the precise and large-scale inference of aberrant molecular phenotypes in cancer and other complex diseases.


Subject(s)
Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/genetics , Transcription Factors/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA/chemistry , DNA/metabolism , Genes, p53 , Humans , Models, Molecular , Mutation, Missense , Protein Structure, Tertiary , Transcription Factors/chemistry , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
7.
J Strength Cond Res ; 27(12): 3335-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23478481

ABSTRACT

The critical velocity (CV) model offers an opportunity to prescribe and to test empirically different velocity-time (V-t) configurations of high-intensity interval training (HIIT); however, such experiments are lacking. We evaluated a group of competitive, female soccer players (age = 19 ± 1 years, height = 168 ± 6 cm, mass = 61 ± 6 kg) completing 1 of 2 different HIIT regimes: a short group (n = 6) completing higher V and shorter t configurations, and a long group (n = 10) completing lower V, longer t configurations. Both groups trained 2 d·wk for 4 weeks. For each workout, both groups ran at velocities exceeding CV and designed to deplete identical fractional percentages of the finite work capacity above CV (D'). The metrics of CV and D' were evaluated at pretraining and posttraining using the 3-minute all-out exercise test on an indoor track using video digitizing of displacement relative to time. Despite differences in the V-t configurations, both groups increased their CV (+0.22 m·s, +6%) and decreased their D' (-24 m, -13%; p < 0.05). We conclude that 2- to 5-minute HIIT bouts are suitable for increasing CV, in previously trained athletes, but they result in a decline of D'. To increase D', we suggest examining HIIT of intensities that are <2 minutes and >130% of maximum oxygen uptake.


Subject(s)
Athletic Performance/physiology , Models, Biological , Running/physiology , Soccer/physiology , Adolescent , Exercise Test , Female , Humans , Linear Models , Oxygen Consumption , Young Adult
8.
Nat Neurosci ; 11(4): 423-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18344996

ABSTRACT

The nucleus accumbens mediates both appetitive motivation for rewards and fearful motivation toward threats, which are generated in part by glutamate-related circuits organized in a keyboard fashion. At rostral sites of the medial shell, localized glutamate disruptions typically generate intense appetitive behaviors in rats, but the disruption incrementally generates fearful behaviors as microinjection sites move more caudally. We found that exposure to stressful environments caused caudal fear-generating zones to expand rostrally, filling approximately 90% of the shell. Conversely, a preferred home environment caused fear-generating zones to shrink and appetitive-generating zones to expand caudally, filling approximately 90% of the shell. Thus, the emotional environments retuned the generation of motivation in corticolimbic circuits.


Subject(s)
Appetitive Behavior/physiology , Emotions/physiology , Fear/physiology , Motivation , Nucleus Accumbens/metabolism , Adaptation, Physiological/physiology , Animals , Brain Mapping , Choice Behavior , Environment , Excitatory Amino Acid Antagonists/pharmacology , Microinjections , Neural Pathways/drug effects , Neural Pathways/metabolism , Nucleus Accumbens/anatomy & histology , Nucleus Accumbens/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Quinoxalines/pharmacology , Random Allocation , Rats , Receptors, Glutamate/drug effects , Receptors, Glutamate/metabolism , Reward , Stress, Psychological/metabolism
9.
PLoS Comput Biol ; 6(7): e1000834, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20628623

ABSTRACT

DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the remaining nucleosomes follow a statistical positioning model.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Nucleosomes/genetics , Sequence Analysis, DNA , Alu Elements/genetics , Base Composition/genetics , Base Sequence/genetics , CCCTC-Binding Factor , DNA, Fungal/chemistry , Humans , ROC Curve , Repressor Proteins/genetics , Reproducibility of Results , Saccharomyces cerevisiae/genetics , Sequence Alignment
10.
Nat Commun ; 11(1): 5573, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149122

ABSTRACT

Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.


Subject(s)
Neoplasms/genetics , RNA Precursors/genetics , RNA Splice Sites , RNA Splicing , AMP-Activated Protein Kinase Kinases , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p15/metabolism , Databases, Genetic , Exons , Gene Expression Regulation, Neoplastic/genetics , Humans , Introns , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 4/genetics , MAP Kinase Kinase Kinase 4/metabolism , Mutation , Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , RNA, Untranslated , RNA-Seq , Repressor Proteins/genetics , Repressor Proteins/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Exome Sequencing , X-linked Nuclear Protein/genetics , X-linked Nuclear Protein/metabolism
11.
J Neurosci ; 28(28): 7184-92, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-18614688

ABSTRACT

An important issue in affective neuroscience concerns the role of mesocorticolimbic dopamine systems in positive-valenced motivation (e.g., reward) versus negative-valenced motivation (e.g., fear). Here, we assessed whether endogenous dopamine receptor stimulation in nucleus accumbens contributes to both appetitive behavior and fearful behavior that is generated in keyboard manner by local glutamate disruptions at different sites in medial shell. 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione (DNQX) microinjections (450 ng) locally disrupt glutamate signals in <4 mm(3) of nucleus accumbens, and generate either desire or fear (or both) depending on precise rostrocaudal location in medial shell. At rostral shell sites, local AMPA/kainate blockade generates positive ingestive behavior, but the elicited motivated behavior becomes incrementally more fearful as the same microinjection is moved caudally. A dopamine-blocking mixture of D(1) and D(2) antagonists (raclopride and SCH-23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,-tetrahydro-1H-3-benzazepine hydrochloride]) was combined here in the same microinjection with DNQX to assess the role of endogenous local dopamine in mediating the DNQX-motivated behaviors. We report that local dopamine blockade prevented DNQX microinjections from generating appetitive behavior (eating) in rostral shell, and equally prevented DNQX from generating fearful behavior (defensive treading) in caudal shell. We conclude that local dopamine is needed to enable disruptions of corticolimbic glutamate signals in shell to generate either positive incentive salience or negative fearful salience (valence depending on site and other conditions). Thus, dopamine interacts with localization of valence-biased glutamate circuits in medial shell to facilitate keyboard stimulation of both appetitive and fearful motivations.


Subject(s)
Dopamine/metabolism , Fear/physiology , Glutamic Acid/metabolism , Limbic System/metabolism , Motivation , Nucleus Accumbens/metabolism , Analysis of Variance , Animals , Behavior, Animal/drug effects , Dopamine Agents/pharmacology , Drug Interactions , Excitatory Amino Acid Agents/pharmacology , Feeding Behavior/drug effects , Gene Expression/drug effects , Limbic System/drug effects , Male , Microinjections/methods , Nucleus Accumbens/drug effects , Oncogene Proteins v-fos/metabolism , Rats , Rats, Sprague-Dawley
12.
Bioinformatics ; 24(13): i348-56, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18586734

ABSTRACT

MOTIVATION: Tandem mass spectrometry (MS/MS) is an indispensable technology for identification of proteins from complex mixtures. Proteins are digested to peptides that are then identified by their fragmentation patterns in the mass spectrometer. Thus, at its core, MS/MS protein identification relies on the relative predictability of peptide fragmentation. Unfortunately, peptide fragmentation is complex and not fully understood, and what is understood is not always exploited by peptide identification algorithms. RESULTS: We use a hybrid dynamic Bayesian network (DBN)/support vector machine (SVM) approach to address these two problems. We train a set of DBNs on high-confidence peptide-spectrum matches. These DBNs, known collectively as Riptide, comprise a probabilistic model of peptide fragmentation chemistry. Examination of the distributions learned by Riptide allows identification of new trends, such as prevalent a-ion fragmentation at peptide cleavage sites C-term to hydrophobic residues. In addition, Riptide can be used to produce likelihood scores that indicate whether a given peptide-spectrum match is correct. A vector of such scores is evaluated by an SVM, which produces a final score to be used in peptide identification. Using Riptide in this way yields improved discrimination when compared to other state-of-the-art MS/MS identification algorithms, increasing the number of positive identifications by as much as 12% at a 1% false discovery rate. AVAILABILITY: Python and C source code are available upon request from the authors. The curated training sets are available at http://noble.gs.washington.edu/proj/intense/. The Graphical Model Tool Kit (GMTK) is freely available at http://ssli.ee.washington.edu/bilmes/gmtk.


Subject(s)
Algorithms , Artificial Intelligence , Mass Spectrometry/methods , Pattern Recognition, Automated/methods , Peptide Mapping/methods , Sequence Analysis, Protein/methods , Amino Acid Sequence , Bayes Theorem , Molecular Sequence Data
13.
PLoS Comput Biol ; 4(11): e1000213, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18989393

ABSTRACT

Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type, segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of 0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are available at http://www.yeastrc.org/pdr.


Subject(s)
Bayes Theorem , Computational Biology/methods , Membrane Proteins/ultrastructure , Models, Molecular , Protein Sorting Signals/physiology , Artificial Intelligence , Fungal Proteins/ultrastructure , Markov Chains , Neural Networks, Computer , Protein Conformation , Reproducibility of Results , Yeasts/ultrastructure
14.
Cell Syst ; 9(1): 24-34.e10, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31344359

ABSTRACT

We present a systematic analysis of the effects of synchronizing a large-scale, deeply characterized, multi-omic dataset to the current human reference genome, using updated software, pipelines, and annotations. For each of 5 molecular data platforms in The Cancer Genome Atlas (TCGA)-mRNA and miRNA expression, single nucleotide variants, DNA methylation and copy number alterations-comprehensive sample, gene, and probe-level studies were performed, towards quantifying the degree of similarity between the 'legacy' GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as 'harmonized' by the Genomic Data Commons. We offer gene lists to elucidate differences that remained after controlling for confounders, and strategies to mitigate their impact on biological interpretation. Our results demonstrate that the hg19 and hg38 TCGA datasets are very highly concordant, promote informed use of either legacy or harmonized omics data, and provide a rubric that encourages similar comparisons as new data emerge and reference data evolve.


Subject(s)
Genome/genetics , MicroRNAs/genetics , Neoplasms/genetics , Software , Controlled Before-After Studies , Datasets as Topic , Gene Expression Profiling , Genome, Human , Genomics , Health Information Exchange , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Reproducibility of Results
15.
Cell Rep ; 23(1): 227-238.e3, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29617662

ABSTRACT

Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinogenesis/genetics , Neoplasms/genetics , Oncogene Fusion , Antineoplastic Agents/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Cell Line, Tumor , Humans , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/pathology , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
16.
Cell Rep ; 23(1): 270-281.e3, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29617666

ABSTRACT

For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.


Subject(s)
Mutation , Neoplasms/genetics , RNA Splice Sites , BRCA1 Protein/genetics , GATA3 Transcription Factor/genetics , HEK293 Cells , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Programmed Cell Death 1 Receptor/genetics , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein/genetics
17.
Cancer Res ; 77(21): e7-e10, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29092928

ABSTRACT

The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR.


Subject(s)
Cloud Computing , Computational Biology , Genomics , Neoplasms/genetics , Datasets as Topic , Genome, Human , Humans , Internet , National Cancer Institute (U.S.) , Research/trends , Software , United States
18.
Genome Med ; 9(1): 113, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29254494

ABSTRACT

The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.


Subject(s)
Genome-Wide Association Study/methods , Polymorphism, Genetic , Protein Conformation , Sequence Analysis, Protein/methods , Algorithms , Congresses as Topic , Genome-Wide Association Study/standards , Humans , Sequence Analysis, Protein/standards
19.
J Neurosci ; 25(50): 11757-67, 2005 Dec 14.
Article in English | MEDLINE | ID: mdl-16354934

ABSTRACT

The basal forebrain functional-anatomical macrosystems, ventral striatopallidum, and extended amygdala are innervated by substantially coextensive distributions of neurons in the prefrontal and insular cortex. This suggests two alternative organizational schemes: convergent, in which a given cortical area projects exclusively to only one of these macrosystems and divergent, in which a given cortical area innervates both forebrain macrosystems. To examine the underlying organization and possibly discriminate between these alternatives, rats were injected with two retrograde tracers in different parts of ventral striatopallidum or extended amygdala (homotypic injection pairs) or with one tracer in each macrosystem (heterotypic). The prefrontal and insular cortex was evaluated microscopically for overlap of retrograde labeling and double labeling of neurons. Homotypic injection pairs in the ventral striatum and extended amygdala produced extensive overlap of retrogradely labeled neurons and significant double labeling, suggesting that cortical projections spread broadly within macrosystems. In contrast, heterotypic injection pairs produced significant overlap of retrograde labeling but negligible double labeling, indicating that ventral striatopallidum and extended amygdala receive inputs from separate sets of prefronto- and insular cortical neurons. The caudomedial shell of the nucleus accumbens, a supposed "transition" zone between striatopallidum and extended amygdala, had extended amygdala-like afferents but produced few double-labeled neurons and these only when paired with ventral striatopallidum. The data suggest that a modular organization of the basal forebrain, with postulated independent information processing by the ventral striatopallidal and extended amygdala macrosystems, is reflected in a corresponding segregation of output neurons in the prefrontal and insular cortices.


Subject(s)
Amygdala/physiology , Cerebral Cortex/physiology , Corpus Striatum/physiology , Globus Pallidus/physiology , Prefrontal Cortex/physiology , Amygdala/chemistry , Animals , Cerebral Cortex/chemistry , Corpus Striatum/chemistry , Globus Pallidus/chemistry , Male , Neural Pathways/chemistry , Neural Pathways/physiology , Prefrontal Cortex/chemistry , Rats , Rats, Sprague-Dawley
20.
J Gerontol Nurs ; 32(4): 18-25; quiz 26-7, 2006 04.
Article in English | MEDLINE | ID: mdl-16615709

ABSTRACT

Individuals with dementia often use behaviors rather than specific verbal complaints to express the presence of a symptom or need. The Serial Trial Intervention uses systematic serial assessments and sequential trials of treatments to identify and treat unmet needs that may be the underlying cause of these behaviors. Because chronic pain is common and often under-treated in this population, a trial of analgesics is used when other approaches, including nonpharmacological treatments, have not been effective. A systematic approach to nursing assessment and treatment is needed to identify and treat discomfort and other unmet needs of individuals with dementia.


Subject(s)
Dementia/nursing , Geriatric Assessment/methods , Needs Assessment/organization & administration , Nursing Assessment/organization & administration , Patient Care Planning/organization & administration , Activities of Daily Living , Affect , Aged , Aged, 80 and over , Constipation/etiology , Constipation/prevention & control , Cues , Dementia/complications , Dementia/psychology , Facial Expression , Female , Geriatric Nursing/organization & administration , Humans , Kinesics , Male , Models, Nursing , Nonverbal Communication , Pain/diagnosis , Pain/etiology , Pain/prevention & control , Pain Measurement/methods , Pain Measurement/nursing , Stress, Psychological/etiology , Stress, Psychological/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL