ABSTRACT
BACKGROUND: Ureaplasma diversum has numerous virulence factors that contribute to pathogenesis in cattle, including Lipid-associated membrane proteins (LAMPs). Therefore, the objectives of this study were to evaluate in silico important characteristics for immunobiological applications and for heterologous expression of 36 LAMPs of U. diversum (UdLAMPs) and, also, to verify by conventional PCR the distribution of these antigens in strains of Brazilian states (Bahia, Minas Gerais, São Paulo, and Mato Grosso do Sul). The Manatee database was used to obtain the gene and peptide sequences of the antigens. Similarity and identity studies were performed using BLASTp and direct antigenicity was evaluated by the VaxiJen v2.0 server. Epitope prediction for B lymphocytes was performed on the BepiPred v2.0 and CBTOPE v1.0 servers. NetBoLApan v1.0 was used to predict CD8+ T lymphocyte epitopes. Subcellular location and presence of transmembrane regions were verified by the software PSORTb v3.0.2 and TMHMM v2.2 respectively. SignalP v5.0, SecretomeP v2.0, and DOLOP servers were used to predict the extracellular excretion signal. Physico-chemical properties were evaluated by the web-software ProtParam, Solpro, and Protein-sol. RESULTS: In silico analysis revealed that many UdLAMPs have desirable properties for immunobiological applications and heterologous expression. The proteins gudiv_61, gudiv_103, gudiv_517, and gudiv_681 were most promising. Strains from the 4 states were PCR positive for antigens predicted with immunogenic and/or with good characteristics for expression in a heterologous system. CONCLUSION: These works contribute to a better understanding of the immunobiological properties of the UdLAMPs and provide a profile of the distribution of these antigens in different Brazilian states.
Subject(s)
Antigens, Bacterial/genetics , Lipid-Linked Proteins/immunology , Ureaplasma/immunology , Animals , Antigens, Bacterial/chemistry , B-Lymphocytes/immunology , Brazil , Cattle , Computer Simulation , Lipid-Linked Proteins/genetics , Ureaplasma/genetics , Virulence Factors/genetics , Virulence Factors/immunologyABSTRACT
BACKGROUND: This study aimed to evaluate the role of biomarkers in the pathophysiological process induced by a Staphylococcus aureus strain obtained in a hospital environment. For this, we intraperitoneally inoculated groups of male BALB/c mice with S. aureus, using a clinical isolate (CI) of S. aureus. MATERIAL/METHODS: Mice were divided into groups according to time of euthanasia (24, 48, 72, 96, 120, 144, and 168 hours of infection). After being euthanized, blood samples were collected for quantification of microorganisms and leukocytes, as well as measurement of biomarkers of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), C-reactive protein (CRP), and Procalcitonin (PCT) by ELISA. Heart, kidneys, and lungs were removed for histopathological analysis, assessment of biomarkers of tissue expression by RT-PCR (polymerase chain reaction with reverse transcriptase), and quantification of microorganisms by real-time quantitative PCR (real-time PCR). RESULTS: The animals infected at between 120 hours and 168 hours had the highest blood levels of S. aureus. We observed that infection promoted increases in the levels of circulating neutrophils and monocytes. However, there was a reduction of circulating neutrophils and monocytes after 96 hours of infection. The infected mice also had increased levels of blood lymphocytes. In this model of infection with S. aureus, IL-6, CRP, and PCT demonstrated greater fidelity as markers of infection, since serum levels were elevated and lowered along with the number of circulating neutrophils and monocytes after resolution of the infection. The lungs showed hyperemia, with enlargement of the alveolar septa. On the other hand, infection with S. aureus did not promote visible change in histological tissue in the heart and kidneys. CONCLUSIONS: In this model of infection with S. aureus, IL-6, CRP, and PCT demonstrated greater fidelity as markers of infection, since serum levels were elevated and lowered along with the number of circulating neutrophils and monocytes after resolution of the infection. We believe our results may provide a better understanding of the pathophysiology, as well as aid in the search for a more reliable method of diagnosis.
Subject(s)
Biomarkers/metabolism , Sepsis/microbiology , Sepsis/physiopathology , Staphylococcal Infections/physiopathology , Animals , Biomarkers/blood , C-Reactive Protein/chemistry , Calcitonin/blood , Calcitonin Gene-Related Peptide , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Inflammation/microbiology , Interleukin-6/blood , Leukocyte Count , Male , Mice , Mice, Inbred BALB C , Protein Precursors/blood , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/bloodABSTRACT
BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.
Subject(s)
Apoptosis/physiology , Ureaplasma Infections/physiopathology , Ureaplasma/pathogenicity , Actin Cytoskeleton/ultrastructure , Bacterial Adhesion , Caspase 2/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Survival , Female , Flow Cytometry , Gene Expression , Gentamicins/pharmacology , HeLa Cells/microbiology , Humans , Microscopy, Confocal , Pathogen-Associated Molecular Pattern Molecules/metabolism , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric , Time Factors , Tumor Necrosis Factor-alpha/metabolism , Ureaplasma/drug effectsABSTRACT
Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.
Subject(s)
Cattle Diseases/diagnosis , Polymerase Chain Reaction/veterinary , Ureaplasma Infections/veterinary , Ureaplasma/genetics , Animals , Cattle , Female , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sensitivity and Specificity , Ureaplasma Infections/diagnosis , Vagina/microbiologyABSTRACT
BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location ofUreaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversuminvasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.