Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 623(7985): 202-209, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37880361

ABSTRACT

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Sea Urchins , Spermatozoa , Animals , Male , Allosteric Regulation , Cyclic AMP/metabolism , Fertility , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ligands , Protein Domains , Protein Multimerization , Sea Urchins/chemistry , Sea Urchins/metabolism , Spermatozoa/chemistry , Spermatozoa/metabolism , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/metabolism
2.
Nature ; 580(7802): 288-293, 2020 04.
Article in English | MEDLINE | ID: mdl-32269335

ABSTRACT

Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present1. In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency1,2. A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a 'ball-and-chain' mechanism3-7. Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.


Subject(s)
Cryoelectron Microscopy , Ion Channel Gating , Methanobacterium/chemistry , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Calcium-Activated/ultrastructure , Calcium/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Potassium Channels, Calcium-Activated/chemistry , Potassium Channels, Calcium-Activated/metabolism , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Thermodynamics
3.
EMBO Rep ; 23(4): e54199, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35253970

ABSTRACT

The ongoing COVID-19 pandemic represents an unprecedented global health crisis. Here, we report the identification of a synthetic nanobody (sybody) pair, Sb#15 and Sb#68, that can bind simultaneously to the SARS-CoV-2 spike RBD and efficiently neutralize pseudotyped and live viruses by interfering with ACE2 interaction. Cryo-EM confirms that Sb#15 and Sb#68 engage two spatially discrete epitopes, influencing rational design of bispecific and tri-bispecific fusion constructs that exhibit up to 100- and 1,000-fold increase in neutralization potency, respectively. Cryo-EM of the sybody-spike complex additionally reveals a novel up-out RBD conformation. While resistant viruses emerge rapidly in the presence of single binders, no escape variants are observed in the presence of the bispecific sybody. The multivalent bispecific constructs further increase the neutralization potency against globally circulating SARS-CoV-2 variants of concern. Our study illustrates the power of multivalency and biparatopic nanobody fusions for the potential development of therapeutic strategies that mitigate the emergence of new SARS-CoV-2 escape mutants.


Subject(s)
COVID-19 Drug Treatment , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Drug Resistance , Humans , Pandemics , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34408021

ABSTRACT

Energy-coupling factor (ECF)-type transporters are small, asymmetric membrane protein complexes (∼115 kDa) that consist of a membrane-embedded, substrate-binding protein (S component) and a tripartite ATP-hydrolyzing module (ECF module). They import micronutrients into bacterial cells and have been proposed to use a highly unusual transport mechanism, in which the substrate is dragged across the membrane by a toppling motion of the S component. However, it remains unclear how the lipid bilayer could accommodate such a movement. Here, we used cryogenic electron microscopy at 200 kV to determine structures of a folate-specific ECF transporter in lipid nanodiscs and detergent micelles at 2.7- and 3.4-Šresolution, respectively. The structures reveal an irregularly shaped bilayer environment around the membrane-embedded complex and suggest that toppling of the S component is facilitated by protein-induced membrane deformations. In this way, structural remodeling of the lipid bilayer environment is exploited to guide the transport process.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy/methods , Folic Acid/metabolism , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Biological Transport , Crystallography, X-Ray , Lactobacillus delbrueckii/metabolism , Models, Molecular , Protein Binding , Protein Conformation
5.
Nat Commun ; 15(1): 6570, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095408

ABSTRACT

ASCT2 is an obligate exchanger of neutral amino acids, contributing to cellular amino acid homeostasis. ASCT2 belongs to the same family (SLC1) as Excitatory Amino Acid Transporters (EAATs) that concentrate glutamate in the cytosol. The mechanism that makes ASCT2 an exchanger rather than a concentrator remains enigmatic. Here, we employ cryo-electron microscopy and molecular dynamics simulations to elucidate the structural basis of the exchange mechanism of ASCT2. We establish that ASCT2 binds three Na+ ions per transported substrate and visits a state that likely acts as checkpoint in preventing Na+ ion leakage, both features shared with EAATs. However, in contrast to EAATs, ASCT2 retains one Na+ ion even under Na+-depleted conditions. We demonstrate that ASCT2 cannot undergo the structural transition in TM7 that is essential for the concentrative transport cycle of EAATs. This structural rigidity and the high-affinity Na+ binding site effectively confine ASCT2 to an exchange mode.


Subject(s)
Amino Acid Transport System ASC , Cryoelectron Microscopy , Minor Histocompatibility Antigens , Molecular Dynamics Simulation , Sodium , Humans , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/chemistry , Amino Acid Transport System ASC/genetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/chemistry , Sodium/metabolism , Binding Sites , HEK293 Cells , Protein Binding
6.
Nat Commun ; 14(1): 4484, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491368

ABSTRACT

Energy-coupling factor (ECF)-type transporters mediate the uptake of micronutrients in many bacteria. They consist of a substrate-translocating subunit (S-component) and an ATP-hydrolysing motor (ECF module) Previous data indicate that the S-component topples within the membrane to alternately expose the binding site to either side of the membrane. In many ECF transporters, the substrate-free S-component can be expelled from the ECF module. Here we study this enigmatic expulsion step by cryogenic electron microscopy and reveal that ATP induces a concave-to-convex shape change of two long helices in the motor, thereby destroying the S-component's docking site and allowing for its dissociation. We show that adaptation of the membrane morphology to the conformational state of the motor may favour expulsion of the substrate-free S-component when ATP is bound and docking of the substrate-loaded S-component after hydrolysis. Our work provides a picture of bilayer-assisted chemo-mechanical coupling in the transport cycle of ECF transporters.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/metabolism , Protein Conformation , Bacteria/metabolism , Biological Transport , Adenosine Triphosphate/metabolism
7.
Curr Opin Struct Biol ; 76: 102440, 2022 10.
Article in English | MEDLINE | ID: mdl-36029606

ABSTRACT

Single-particle cryogenic electron-microscopy (cryo-EM) has emerged as a powerful technique for the structural characterisation of membrane proteins, especially for targets previously thought to be intractable. Taking advantage of the latest hard- and software developments, high-resolution three-dimensional (3D) reconstructions of membrane proteins by cryo-EM has become routine, with 300-kV transmission electron microscopes (TEMs) being the current standard. The use of 200-kV cryo-TEMs is gaining increasingly prominence, showing the capabilities of reaching better than 2 Å resolution for soluble proteins and better than 3 Å resolution for membrane proteins. Here, we highlight the challenges working with membrane proteins and the impact of cryo-EM, and review the technical and practical benefits, achievements and limitations of imaging at lower electron acceleration voltages.


Subject(s)
Membrane Proteins , Single Molecule Imaging , Cryoelectron Microscopy/methods , Software
8.
Nat Struct Mol Biol ; 29(11): 1092-1100, 2022 11.
Article in English | MEDLINE | ID: mdl-36352139

ABSTRACT

Lipids play important roles in regulating membrane protein function, but the molecular mechanisms used are elusive. Here we investigated how anionic lipids modulate SthK, a bacterial pacemaker channel homolog, and HCN2, whose activity contributes to pacemaking in the heart and brain. Using SthK allowed the reconstitution of purified channels in controlled lipid compositions for functional and structural assays that are not available for the eukaryotic channels. We identified anionic lipids bound tightly to SthK and their exact binding locations and determined that they potentiate channel activity. Cryo-EM structures in the most potentiating lipids revealed an open state and identified a nonannular lipid bound with its headgroup near an intersubunit salt bridge that clamps the intracellular channel gate shut. Breaking this conserved salt bridge abolished lipid modulation in SthK and eukaryotic HCN2 channels, indicating that anionic membrane lipids facilitate channel opening by destabilizing these interactions. Our findings underline the importance of state-dependent protein-lipid interactions.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Membrane Lipids , Anions
9.
Elife ; 112022 Oct 18.
Article in English | MEDLINE | ID: mdl-36255052

ABSTRACT

KdpFABC is a high-affinity prokaryotic K+ uptake system that forms a functional chimera between a channel-like subunit (KdpA) and a P-type ATPase (KdpB). At high K+ levels, KdpFABC needs to be inhibited to prevent excessive K+ accumulation to the point of toxicity. This is achieved by a phosphorylation of the serine residue in the TGES162 motif in the A domain of the pump subunit KdpB (KdpBS162-P). Here, we explore the structural basis of inhibition by KdpBS162 phosphorylation by determining the conformational landscape of KdpFABC under inhibiting and non-inhibiting conditions. Under turnover conditions, we identified a new inhibited KdpFABC state that we termed E1P tight, which is not part of the canonical Post-Albers transport cycle of P-type ATPases. It likely represents the biochemically described stalled E1P state adopted by KdpFABC upon KdpBS162 phosphorylation. The E1P tight state exhibits a compact fold of the three cytoplasmic domains and is likely adopted when the transition from high-energy E1P states to E2P states is unsuccessful. This study represents a structural characterization of a biologically relevant off-cycle state in the P-type ATPase family and supports the emerging discussion of P-type ATPase regulation by such states.


Subject(s)
Cation Transport Proteins , Escherichia coli Proteins , P-type ATPases , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Cation Transport Proteins/chemistry , Potassium/metabolism
10.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 565-571, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33950013

ABSTRACT

Sample thickness is a known key parameter in cryo-electron microscopy (cryo-EM) and can affect the amount of high-resolution information retained in the image. Yet, common data-acquisition approaches in single-particle cryo-EM do not take it into account. Here, it is demonstrated how the sample thickness can be determined before data acquisition, allowing the identification of optimal regions and the restriction of automated data collection to images with preserved high-resolution details. This quality-over-quantity approach almost entirely eliminates the time- and storage-consuming collection of suboptimal images, which are discarded after a recorded session or during early image processing due to a lack of high-resolution information. It maximizes the data-collection efficiency and lowers the electron-microscopy time required per data set. This strategy is especially useful if the speed of data collection is restricted by the microscope hardware and software, or if microscope access time, data transfer, data storage and computational power are a bottleneck.


Subject(s)
Cryoelectron Microscopy/methods , Fructose-Bisphosphate Aldolase/chemistry , Image Processing, Computer-Assisted/methods , Specimen Handling/methods , Animals , Rabbits , Software
11.
Nat Commun ; 12(1): 785, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542223

ABSTRACT

The binding of cytoplasmic Ca2+ to the anion-selective channel TMEM16A triggers a conformational change around its binding site that is coupled to the release of a gate at the constricted neck of an hourglass-shaped pore. By combining mutagenesis, electrophysiology, and cryo-electron microscopy, we identified three hydrophobic residues at the intracellular entrance of the neck as constituents of this gate. Mutation of each of these residues increases the potency of Ca2+ and results in pronounced basal activity. The structure of an activating mutant shows a conformational change of an α-helix that contributes to Ca2+ binding as a likely cause for the basal activity. Although not in physical contact, the three residues are functionally coupled to collectively contribute to the stabilization of the gate in the closed conformation of the pore, thus explaining the low open probability of the channel in the absence of Ca2+.


Subject(s)
Anoctamin-1/metabolism , Calcium/metabolism , Ion Channel Gating , Neoplasm Proteins/metabolism , Anoctamin-1/genetics , Anoctamin-1/ultrastructure , Binding Sites/genetics , Cations, Divalent/metabolism , Chlorides/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/ultrastructure , Protein Binding , Protein Conformation, alpha-Helical
12.
Nat Commun ; 11(1): 6401, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328472

ABSTRACT

SthK, a cyclic nucleotide-modulated ion channel from Spirochaeta thermophila, activates slowly upon cAMP increase. This is reminiscent of the slow, cAMP-induced activation reported for the hyperpolarization-activated and cyclic nucleotide-gated channel HCN2 in the family of so-called pacemaker channels. Here, we investigate slow cAMP-induced activation in purified SthK channels using stopped-flow assays, mutagenesis, enzymatic catalysis and inhibition assays revealing that the cis/trans conformation of a conserved proline in the cyclic nucleotide-binding domain determines the activation kinetics of SthK. We propose that SthK exists in two forms: trans Pro300 SthK with high ligand binding affinity and fast activation, and cis Pro300 SthK with low affinity and slow activation. Following channel activation, the cis/trans equilibrium, catalyzed by prolyl isomerases, is shifted towards trans, while steady-state channel activity is unaffected. Our results reveal prolyl isomerization as a regulatory mechanism for SthK, and potentially eukaryotic HCN channels. This mechanism could contribute to electrical rhythmicity in cells.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Spirochaeta/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cryoelectron Microscopy , Cyclic AMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclosporine/pharmacology , Ion Channel Gating/physiology , Isomerism , Kinetics , Models, Molecular , Peptidylprolyl Isomerase/metabolism , Proline/metabolism
13.
Sci Adv ; 6(47)2020 11.
Article in English | MEDLINE | ID: mdl-33208376

ABSTRACT

(Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes.

14.
Elife ; 82019 01 16.
Article in English | MEDLINE | ID: mdl-30648972

ABSTRACT

The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.


Subject(s)
Aspergillus fumigatus/metabolism , Calcium/pharmacology , Fungal Proteins/metabolism , Lipids/chemistry , Phospholipid Transfer Proteins/metabolism , Amino Acid Sequence , Aspergillus fumigatus/drug effects , Binding Sites , Biological Transport/drug effects , Ceramides/pharmacology , Fungal Proteins/chemistry , Ligands , Membrane Lipids/metabolism , Models, Molecular , Nanoparticles/chemistry , Phospholipid Transfer Proteins/chemistry , Protein Conformation
15.
Elife ; 72018 07 20.
Article in English | MEDLINE | ID: mdl-30028291

ABSTRACT

Cyclic nucleotide-modulated channels have important roles in visual signal transduction and pacemaking. Binding of cyclic nucleotides (cAMP/cGMP) elicits diverse functional responses in different channels within the family despite their high sequence and structure homology. The molecular mechanisms responsible for ligand discrimination and gating are unknown due to lack of correspondence between structural information and functional states. Using single particle cryo-electron microscopy and single-channel recording, we assigned functional states to high-resolution structures of SthK, a prokaryotic cyclic nucleotide-gated channel. The structures for apo, cAMP-bound, and cGMP-bound SthK in lipid nanodiscs, correspond to no, moderate, and low single-channel activity, respectively, consistent with the observation that all structures are in resting, closed states. The similarity between apo and ligand-bound structures indicates that ligand-binding domains are strongly coupled to pore and SthK gates in an allosteric, concerted fashion. The different orientations of cAMP and cGMP in the 'resting' and 'activated' structures suggest a mechanism for ligand discrimination.


Subject(s)
Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Cryoelectron Microscopy , Models, Molecular , Protein Binding , Protein Conformation , Spirochaeta/enzymology
16.
J Gen Physiol ; 150(6): 821-834, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29752414

ABSTRACT

Cyclic nucleotide-modulated ion channels play several essential physiological roles. They are involved in signal transduction in photoreceptors and olfactory sensory neurons as well as pacemaking activity in the heart and brain. Investigations of the molecular mechanism of their actions, including structural and electrophysiological characterization, are restricted by the availability of stable, purified protein obtained from accessible systems. Here, we establish that SthK, a cyclic nucleotide-gated (CNG) channel from Spirochaeta thermophila, is an excellent model for investigating the gating of eukaryotic CNG channels at the molecular level. The channel has high sequence similarity with its eukaryotic counterparts and was previously reported to be activated by cyclic nucleotides in patch-clamp experiments with Xenopus laevis oocytes. We optimized protein expression and purification to obtain large quantities of pure, homogeneous, and active recombinant SthK protein from Escherichia coli A negative-stain electron microscopy (EM) single-particle analysis indicated that this channel is a promising candidate for structural studies with cryo-EM. Using radioactivity and fluorescence flux assays, as well as single-channel recordings in lipid bilayers, we show that the protein is partially activated by micromolar concentrations of cyclic adenosine monophosphate (cAMP) and that channel activity is increased by depolarization. Unlike previous studies, we find that cyclic guanosine monophosphate (cGMP) is also able to activate SthK, but with much lower efficiency than cAMP. The distinct sensitivities to different ligands resemble eukaryotic CNG and hyperpolarization-activated and cyclic nucleotide-modulated channels. Using a fluorescence binding assay, we show that cGMP and cAMP bind to SthK with similar apparent affinities, suggesting that the large difference in channel activation by cAMP or cGMP is caused by the efficacy with which each ligand promotes the conformational changes toward the open state. We conclude that the functional characteristics of SthK reported here will permit future studies to analyze ligand gating and discrimination in CNG channels.


Subject(s)
Bacterial Proteins/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Ion Channel Gating , Animals , Bacterial Proteins/chemistry , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/chemistry , Lipid Bilayers/metabolism , Protein Binding , Spirochaeta , Xenopus
17.
Nat Commun ; 9(1): 3978, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30266906

ABSTRACT

Cyclic nucleotide-gated (CNG) ion channels are non-selective cation channels key to signal transduction. The free energy difference of cyclic-nucleotide (cAMP/cGMP) binding/unbinding is translated into mechanical work to modulate the open/closed probability of the pore, i.e., gating. Despite the recent advances in structural determination of CNG channels, the conformational changes associated with gating remain unknown. Here we examine the conformational dynamics of a prokaryotic homolog of CNG channels, SthK, using high-speed atomic force microscopy (HS-AFM). HS-AFM of SthK in lipid bilayers shows that the CNBDs undergo dramatic conformational changes during the interconversion between the resting (apo and cGMP) and the activated (cAMP) states: the CNBDs approach the membrane and splay away from the 4-fold channel axis accompanied by a clockwise rotation with respect to the pore domain. We propose that these movements may be converted by the C-linker to pull the pore helices open in an iris diaphragm-like mechanism.


Subject(s)
Bacterial Proteins/chemistry , Cyclic Nucleotide-Gated Cation Channels/chemistry , Ion Channel Gating , Protein Conformation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic GMP/chemistry , Cyclic GMP/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Microscopy, Atomic Force/methods , Models, Molecular , Protein Binding , Rotation , Spirochaeta/metabolism
18.
Micron ; 92: 19-24, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27825023

ABSTRACT

The mouse serotonin 5-HT3A receptor is a homo-pentameric ligand-gated ion channel (pLGIC) mediating fast excitatory neurotransmission in the central nervous system. The molecular mechanism of ion permeation of 5-HT3A receptors triggered by the neurotransmitter serotonin is not yet fully understood. The recent X-ray structure of the mouse serotonin 5-HT3A receptor in complex with a stabilizing nanobody revealed for the first time the entire structure of a mammalian pLGIC in detergent. Structural information of the receptor in a lipid bilayer however is still limited primarily due to the lack of 2D crystals of the receptor in a lipid bilayer. Here we present our results on the formation and improvement of diffracting 2D crystals of the mouse 5-HT3A by limited proteolysis and addition of conformational nanobodies.


Subject(s)
Crystallization , Receptors, Serotonin, 5-HT3/chemistry , Animals , Cryoelectron Microscopy , Crystallography , Imaging, Three-Dimensional , Mice , Models, Molecular , Molecular Conformation , Receptors, Serotonin, 5-HT3/ultrastructure , Single-Domain Antibodies
19.
Nat Commun ; 7: 12314, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545823

ABSTRACT

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.


Subject(s)
Bacteriorhodopsins/chemistry , Crystallography, X-Ray/methods , Lasers , Lipids/chemistry , Crystallography, X-Ray/instrumentation , Feasibility Studies , Protein Conformation , Synchrotrons , Time Factors , Viscosity , X-Ray Absorption Spectroscopy/instrumentation , X-Ray Absorption Spectroscopy/methods
20.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 7): 856-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26144230

ABSTRACT

Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.


Subject(s)
Lasers/statistics & numerical data , Rhodopsin/chemistry , X-Ray Diffraction/methods , Animals , Cattle , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL