Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Publication year range
1.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38453481

ABSTRACT

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Subject(s)
Oocytes , Zygote , Animals , Child , Female , Humans , Mice , CCAAT-Enhancer-Binding Proteins/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Methylation/genetics , Embryonic Development/genetics , Genomic Imprinting/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Trends Genet ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955588

ABSTRACT

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

3.
Nat Rev Genet ; 20(4): 235-248, 2019 04.
Article in English | MEDLINE | ID: mdl-30647469

ABSTRACT

Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.


Subject(s)
DNA Methylation , Genetic Diseases, Inborn/genetics , Genome, Human , Genomic Imprinting , Animals , Humans
4.
Hum Mol Genet ; 30(16): 1509-1520, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34132339

ABSTRACT

The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1∆2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1∆1.8). The phenotype of these mice is different from that of the hIC1∆2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1Δ1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1Δ1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression.


Subject(s)
Beckwith-Wiedemann Syndrome , RNA, Long Noncoding , Animals , Beckwith-Wiedemann Syndrome/genetics , Binding Sites , CCCTC-Binding Factor/genetics , DNA Methylation/genetics , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
Clin Genet ; 102(4): 314-323, 2022 10.
Article in English | MEDLINE | ID: mdl-35842840

ABSTRACT

The prevalence of Beckwith-Wiedemann spectrum (BWSp) is tenfold increased in children conceived through assisted reproductive techniques (ART). More than 90% of ART-BWSp patients reported so far display imprinting center 2 loss-of-methylations (IC2-LoM), versus 50% of naturally conceived BWSp patients. We describe a cohort of 74 ART-BWSp patients comparing their features with a cohort of naturally conceived BWSp patients, with the ART-BWSp patients previously described in literature, and with the general population of children born from ART. We found that the distribution of UPD(11)pat was not significantly different in ART and naturally conceived patients. We observed 68.9% of IC2-LoM and 16.2% of mosaic UPD(11)pat in our ART cohort, that strongly differ from the figure reported in other cohorts so far. Since UPD(11)pat likely results from post-fertilization recombination events, our findings allows to hypothesize that more complex molecular mechanisms, besides methylation disturbances, may underlie BWSp increased risk in ART pregnancies. Moreover, comparing the clinical features of ART and non-ART BWSp patients, we found that ART-BWSp patients might have a milder phenotype. Finally, our data show a progressive increase in the prevalence of BWSp over time, paralleling that of ART usage in the last decades.


Subject(s)
Beckwith-Wiedemann Syndrome , Genomic Imprinting , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , Female , Fertilization , Genomic Imprinting/genetics , Humans , Pregnancy , Reproductive Techniques, Assisted/adverse effects
6.
J Med Genet ; 58(11): 783-788, 2021 11.
Article in English | MEDLINE | ID: mdl-32938693

ABSTRACT

BACKGROUND: Triploidy is one of the most common chromosome abnormalities affecting human gestation and accounts for an important fraction of first-trimester miscarriages. Triploidy has been demonstrated in a few cases of recurrent pregnancy loss (RPL) but its molecular mechanisms are unknown. This study aims to identify the genetic cause of RPL associated with fetus triploidy. METHODS: We investigated genomic imprinting, genotyped sequence-tagged site (STS) markers and performed exome sequencing in a family including two sisters with RPL. Moreover, we evaluated oocyte maturation in vivo and in vitro and effect of the candidate protein variant in silico. RESULTS: While features of hydatidiform mole were excluded, the presence of triploidy of maternal origin was demonstrated in the fetuses. Oocyte maturation was deficient and all the maternally inherited pericentromeric STS alleles were homozygous in the fetuses. A deleterious missense variant (p.V1251D) of the cyclin B3 gene (CCNB3) affecting a residue conserved in placental mammals and located in a region that can interact with the cyclin-dependent kinase 1 or cyclin-dependent kinase 2 cosegregated in homozygosity with RPL. CONCLUSION: Here, we report a family in which a damaging variant in cyclin B3 is associated with the failure of oocyte meiosis II and recurrent fetus triploidy, implicating a rationale for CCNB3 testing in RPL.


Subject(s)
Abortion, Habitual/genetics , Cyclin B/genetics , Triploidy , Cyclin B/chemistry , Female , Humans , Meiosis/genetics , Oocytes/physiology , Pregnancy , Exome Sequencing
7.
PLoS Genet ; 14(2): e1007243, 2018 02.
Article in English | MEDLINE | ID: mdl-29470501

ABSTRACT

Differential DNA methylation defects of H19/IGF2 are associated with congenital growth disorders characterized by opposite clinical pictures. Due to structural differences between human and mouse, the mechanisms by which mutations of the H19/IGF2 Imprinting Control region (IC1) result in these diseases are undefined. To address this issue, we previously generated a mouse line carrying a humanized IC1 (hIC1) and now replaced the wildtype with a mutant IC1 identified in the overgrowth-associated Beckwith-Wiedemann syndrome. The new humanized mouse line shows pre/post-natal overgrowth on maternal transmission and pre/post-natal undergrowth on paternal transmission of the mutation. The mutant hIC1 acquires abnormal methylation during development causing opposite H19/Igf2 imprinting defects on maternal and paternal chromosomes. Differential and possibly mosaic Igf2 expression and imprinting is associated with asymmetric growth of bilateral organs. Furthermore, tissue-specific imprinting defects result in deficient liver- and placenta-derived Igf2 on paternal transmission and excessive Igf2 in peripheral tissues on maternal transmission, providing a possible molecular explanation for imprinting-associated and phenotypically contrasting growth disorders.


Subject(s)
Genomic Imprinting/genetics , Growth Disorders/congenital , Growth Disorders/genetics , Mosaicism , Animals , Cells, Cultured , Female , Humans , Insulin-Like Growth Factor II/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Mouse Embryonic Stem Cells , Mutation , Organ Specificity/genetics , Phenotype , Pregnancy , RNA, Long Noncoding/genetics
8.
Trends Genet ; 32(7): 444-455, 2016 07.
Article in English | MEDLINE | ID: mdl-27235113

ABSTRACT

Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs).


Subject(s)
DNA Methylation/genetics , Genomic Imprinting/genetics , Histone Code/genetics , Genome, Human , Germ Cells , Humans , Mutation/genetics
9.
Genet Med ; 21(8): 1808-1820, 2019 08.
Article in English | MEDLINE | ID: mdl-30635621

ABSTRACT

PURPOSE: Beckwith-Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM. METHODS: We looked for cases showing the clinical features of both BWS and long QT syndrome (LQTS), which is often associated with KCNQ1 variants. Pathogenic variants were identified by genomic analysis and targeted sequencing. Functional experiments were performed to link these pathogenic variants to the imprinting defect. RESULTS: We found three rare cases in which complete IC2 LOM is associated with maternal transmission of KCNQ1 variants, two of which were demonstrated to affect KCNQ1 transcription upstream of IC2. As a consequence of KCNQ1 haploinsufficiency, these variants also cause LQTS on both maternal and paternal transmission. CONCLUSION: These results are consistent with the hypothesis that, similar to what has been demonstrated in mouse, lack of transcription across IC2 results in failure of methylation establishment in the female germline and BWS later in development, and also suggest a new link between LQTS and BWS that is important for genetic counseling.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , KCNQ1 Potassium Channel/genetics , Adolescent , Adult , Animals , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/pathology , Child , Child, Preschool , Chromosomes, Human, Pair 11/genetics , Female , Genomic Imprinting/genetics , Humans , Infant , Introns/genetics , Male , Maternal Inheritance/genetics , Mice , Pedigree , Young Adult
10.
Mol Cell ; 44(3): 361-72, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22055183

ABSTRACT

The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Subject(s)
Chromatin Assembly and Disassembly , DNA Methylation , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Genomic Imprinting , Nuclear Proteins/metabolism , Nucleotide Motifs , Repressor Proteins/metabolism , Animals , Base Sequence , Binding Sites , CCAAT-Enhancer-Binding Proteins , Cell Line , Chromosomal Proteins, Non-Histone/metabolism , DNA Modification Methylases/metabolism , Gene Knockout Techniques , Histone-Lysine N-Methyltransferase , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nuclear Proteins/genetics , Protein Methyltransferases/metabolism , Repressor Proteins/genetics , Tripartite Motif-Containing Protein 28 , Ubiquitin-Protein Ligases
11.
Proc Natl Acad Sci U S A ; 113(39): 10938-43, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621468

ABSTRACT

Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin-specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19(hIC1) We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19(+/hIC1) mice will elucidate the molecular mechanisms that may underlie SRS.


Subject(s)
Genomic Imprinting , Insulin-Like Growth Factor II/genetics , RNA, Long Noncoding/genetics , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology , Alleles , Animals , DNA Methylation/genetics , Embryo, Mammalian/metabolism , Female , Gene Targeting , Genetic Loci , Histones/metabolism , Humans , Lysine/metabolism , Male , Mice, Inbred C57BL , Phenotype , Spermatogenesis/genetics , Spermatozoa/metabolism
12.
Nucleic Acids Res ; 44(17): 8165-78, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27257070

ABSTRACT

ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.


Subject(s)
Gene Expression Regulation, Developmental , Genomic Imprinting , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites/genetics , Cell Differentiation/genetics , CpG Islands/genetics , Epigenesis, Genetic , Genetic Loci , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Models, Genetic
13.
Nucleic Acids Res ; 44(3): 1118-32, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26481358

ABSTRACT

Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.


Subject(s)
DNA Methylation , Genomic Imprinting , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/genetics , Alleles , Animals , Base Sequence , Cell Line , Chromatin Immunoprecipitation , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleotide Motifs/genetics , Polymorphism, Single Nucleotide , Protein Binding/genetics , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28
14.
J Pediatr ; 176: 142-149.e1, 2016 09.
Article in English | MEDLINE | ID: mdl-27372391

ABSTRACT

OBJECTIVE: To compare tumor risk in the 4 Beckwith-Wiedemann syndrome (BWS) molecular subgroups: Imprinting Control Region 1 Gain of Methylation (ICR1-GoM), Imprinting Control Region 2 Loss of Methylation (ICR2-LoM), Chromosome 11p15 Paternal Uniparental Disomy (UPD), and Cyclin-Dependent Kinase Inhibitor 1C gene (CDKN1C) mutation. STUDY DESIGN: Studies on BWS and tumor development published between 2000 and 2015 providing (epi)genotype-cancer correlations with histotype data were reviewed and meta-analysed with cancer histotypes as measured outcome and (epi)genotype as exposure. RESULTS: A total of 1370 patients with BWS were included: 102 developed neoplasms (7.4%). Tumor prevalence was 2.5% in ICR2-LoM, 13.8% in UPD, 22.8% in ICR1-GoM, and 8.6% in patients with CDKN1C mutations. Cancer ORs were 12.8 in ICR1-GoM, 6.5 in UPD, and 2.9 in patients with CDKN1C mutations compared with patients with ICR2-LoM. Wilms tumor was associated with ICR1-GoM (OR 68.3) and UPD (OR 13.2). UPD also was associated with hepatoblastoma (OR 5.2) and adrenal carcinoma (OR 7.0), and CDKN1C mutations with neuroblastic tumors (OR 7.2). CONCLUSION: Cancer screening in BWS could be differentiated on the basis of (epi)genotype and target specific histotypes. Patients with ICR1-GoM and UPD should undergo renal ultrasonography scanning, given their risk of Wilms tumor. Alpha feto protein monitoring for heptaoblastoma is suggested in patients with UPD. Adrenal carcinoma may deserve screening in patients with UPD. Patients with CDKN1C mutations may deserve neuroblastoma screening based on urinary markers and ultrasonography scanning. Finally, screening appears questionable in cases of ICR2-LoM, given low tumor risk.


Subject(s)
Beckwith-Wiedemann Syndrome/complications , Beckwith-Wiedemann Syndrome/genetics , Neoplasms/genetics , Beckwith-Wiedemann Syndrome/diagnosis , Child , Clinical Protocols , Genotype , Humans , Neoplasms/classification , Neoplasms/epidemiology , Neoplasms/pathology , Risk Factors , Systematic Reviews as Topic
15.
Hum Mol Genet ; 22(3): 544-57, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23118352

ABSTRACT

At chromosome 11p15.5, the imprinting centre 1 (IC1) controls the parent of origin-specific expression of the IGF2 and H19 genes. The 5 kb IC1 region contains multiple target sites (CTS) for the zinc-finger protein CTCF, whose binding on the maternal chromosome prevents the activation of IGF2 and allows that of H19 by common enhancers. CTCF binding helps maintaining the maternal IC1 methylation-free, whereas on the paternal chromosome gamete-inherited DNA methylation inhibits CTCF interaction and enhancer-blocking activity resulting in IGF2 activation and H19 silencing. Maternally inherited 1.4-2.2 kb deletions are associated with methylation of the residual CTSs and Beckwith-Wiedemann syndrome, although with different penetrance and expressivity. We explored the relationship between IC1 microdeletions and phenotype by analysing a number of previously described and novel mutant alleles. We used a highly quantitative assay based on next generation sequencing to measure DNA methylation in affected families and analysed enhancer-blocking activity and CTCF binding in cultured cells. We demonstrate that the microdeletions mostly affect IC1 function and CTCF binding by changing CTS spacing. Thus, the extent of IC1 inactivation and the clinical phenotype are influenced by the arrangement of the residual CTSs. A CTS spacing similar to the wild-type allele results in moderate IC1 inactivation and is associated with stochastic DNA methylation of the maternal IC1 and incomplete penetrance. Microdeletions with different CTS spacing display severe IC1 inactivation and are associated with IC1 hypermethylation and complete penetrance. Careful characterization of the IC1 microdeletions is therefore needed to predict recurrence risks and phenotypical outcomes.


Subject(s)
Gene Deletion , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Phenotype , RNA, Long Noncoding/genetics , Repressor Proteins/genetics , Alleles , Binding Sites/genetics , CCCTC-Binding Factor , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 11/genetics , DNA Methylation , Gene Expression Regulation , Gene Silencing , Genetic Loci , Humans , Insulin-Like Growth Factor II/metabolism , Pedigree , RNA, Long Noncoding/metabolism , Repressor Proteins/metabolism , Sequence Analysis, DNA
16.
BMC Med Genet ; 16: 69, 2015 Aug 23.
Article in English | MEDLINE | ID: mdl-26297663

ABSTRACT

BACKGROUND: Deletions on the distal portion of the long arm of chromosome 6 are relatively uncommon, and only a small number occurs in the paternal copy, causing growth abnormalities. As a result, extensive clinical descriptions are lacking. CASE PRESENTATION: We describe a male of Italian descent born at 35 weeks by elective caesarean delivery presenting hypoplastic left colon, bilateral inguinal hernia, dysplastic tricuspid and pulmonary valves, premature ventricular contractions, recurrent otitis media, poor feeding, gastro-oesophageal reflux, bilateral pseudopapilledema, and astigmatism. He also showed particular facial dysmorphisms and postnatal growth failure. Early psychomotor development was mildly delayed. At 3.75 years, he was evaluated for severe short stature (-2.98 SD) and delayed bone age. He showed an insulin-like growth factor 1 concentration (IGF-1) in the low-normal range. Growth hormone stimulation tests showed a low response to clonidine and insulin. Magnetic resonance imaging showed hypophyseal hypoplasia. Genetic evaluation by Single Nucleotide Polymorphism arrays showed a de novo 6q24.2-q25.2 deletion on paternal chromosome 6. CONCLUSION: We confirm that this is a new congenital malformation syndrome associated with a deletion of 6q24.2-q25.2 on paternal chromosome 6. We suggest evaluating the growth hormone axis in children with 6q24.2-q25.2 deletions and growth failure.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics , Growth Disorders/genetics , Growth Hormone/deficiency , Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/pathology , Comparative Genomic Hybridization , Echocardiography , Follow-Up Studies , Growth Disorders/drug therapy , Growth Disorders/pathology , Growth Hormone/administration & dosage , Humans , Italy , Karyotyping , Magnetic Resonance Imaging , Male
17.
BMC Med Genet ; 16: 30, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25943194

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. CASE PRESENTATION: A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. CONCLUSIONS: We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2 allele in both affected family members may reflect the active state of the normally silenced maternal IGF2 copy and can be a consequence of the deletion. The deletion results in a variable clinical phenotype and expression.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Enhancer Elements, Genetic/genetics , Genetic Loci/genetics , Sequence Deletion , Adult , Cytogenetic Analysis , DNA Methylation , Female , Humans , Infant, Newborn , Insulin-Like Growth Factor II/genetics , Male , Phenotype , Pregnancy
18.
J Hum Genet ; 60(6): 287-93, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25809938

ABSTRACT

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and post-natal growth retardation, dysmorphic facial features and body asymmetry. About 50% of the patients carry (epi)genetic alterations involving chromosomes 7 or 11.The high proportion of patients with unidentified molecular etiology suggests the involvement of other genes. Interestingly, SRS patients share clinical features with the 12q14 microdeletion syndrome, characterized by several deletions with a 2.6 Mb region of overlap. Among the genes present in this interval, high mobility AT-hook 2 (HMGA2) appears to be the most likely cause of the growth deficiency, due to its described growth control function. To define the role of HMGA2 in SRS, we looked for 12q14 chromosome imbalances and HMGA2 mutations in a cohort of 45 patients with growth retardation and SRS-like phenotype but no 11p15 (epi)mutations or maternal uniparental disomy of chromosome 7 (matUPD7). We identified a novel 7 bp intronic deletion in HMGA2 present in heterozygosity in the proband and her mother both displaying the typical features of SRS. We demonstrated that the deletion affected normal splicing, indicating that it is a likely cause of HMGA2 deficiency. This study provides the first evidence that a loss-of-function mutation of HMGA2 can be associated with a familial form of SRS. We suggest that HMGA2 mutations leading to haploinsufficiency should be investigated in the SRS patients negative for the typical 11p15 (epi)mutations and matUPD7.


Subject(s)
HMGA2 Protein/genetics , Silver-Russell Syndrome/genetics , Base Sequence , Case-Control Studies , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Pedigree , Phenotype , RNA Splice Sites , Sequence Deletion
19.
Nucleic Acids Res ; 41(4): 2171-9, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23295672

ABSTRACT

Paternal duplications of chromosome 6q24, a region that contains the imprinted PLAGL1 and HYMAI transcripts, are associated with transient neonatal diabetes mellitus. A common feature of imprinted genes is that they tend to cluster together, presumably as a result of sharing common cis-acting regulatory elements. To determine the extent of this imprinted cluster in human and mouse, we have undertaken a systematic analysis of allelic expression and DNA methylation of the genes mapping within an ∼1.4-Mb region flanking PLAGL1/Plagl1. We confirm that all nine neighbouring genes are biallelically expressed in both species. In human we identify two novel paternally expressed PLAGL1 coding transcripts that originate from unique promoter regions. Chromatin immunoprecipitation for CTCF and the cohesin subunits RAD21 and SMC3 reveals evolutionarily conserved binding sites within unmethylated regions ∼5 kb downstream of the PLAGL1 differentially methylated region and within the PLAGL1 3' untranslated region (UTR). Higher-order chromatin looping occurs between these regions in both expressing and non-expressing tissues, forming a non-allelic chromatin loop around the PLAGL1/Plagl1 gene. In placenta and brain tissues, we identify an additional interaction between the PLAGL1 P3/P4 promoters and the unmethylated element downstream of the PLAGL1 differentially methylated region that we propose facilitates imprinted expression of these alternative isoforms.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , Genomic Imprinting , Repressor Proteins/metabolism , Alleles , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 6 , DNA-Binding Proteins/metabolism , Female , Genes, Tumor Suppressor , Genotype , Humans , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Placenta/metabolism , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , Transcription Factors/genetics , Cohesins
20.
Hum Mol Genet ; 21(1): 10-25, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21920939

ABSTRACT

A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5' 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5' 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Genomic Imprinting , RNA, Untranslated/genetics , Silver-Russell Syndrome/genetics , Adult , Beckwith-Wiedemann Syndrome/metabolism , Child, Preschool , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 11/metabolism , DNA Methylation , Female , Gene Duplication , Gene Silencing , Humans , Infant , Male , Pedigree , Potassium Channels, Voltage-Gated/genetics , Protein Binding , RNA, Untranslated/metabolism , Silver-Russell Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL