Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 141(13): 1553-1559, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36574346

ABSTRACT

Advances in genomic diagnostics hold promise for improved care of rare hematologic diseases. Here, we describe a novel targeted therapeutic approach for Ghosal hematodiaphyseal dysplasia, an autosomal recessive disease characterized by severe normocytic anemia and bone abnormalities due to loss-of-function mutations in thromboxane A synthase 1 (TBXAS1). TBXAS1 metabolizes prostaglandin H2 (PGH2), a cyclooxygenase (COX) product of arachidonic acid, into thromboxane A2. Loss-of-function mutations in TBXAS result in an increase in PGH2 availability for other PG synthases. The current treatment for Ghosal hematodiaphyseal dysplasia syndrome consists of corticosteroids. We hypothesize that nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit COX-1 and COX-2, could ameliorate the effects of TBXAS1 loss and improve hematologic function by reducing prostaglandin formation. We treated 2 patients with Ghosal hematodiaphyseal dysplasia syndrome, an adult and a child, with standard doses of NSAIDs (aspirin or ibuprofen). Both patients had rapid improvements concerning hematologic parameters and inflammatory markers without adverse events. Mass spectrometry analysis demonstrated that urinary PG metabolites were increased along with proinflammatory lipoxygenase (LOX) products 5-hydroxyeicosatetraenoic acid and leukotriene E4. Our data show that NSAIDs at standard doses surprisingly reduced both COX and LOX products, leading to the resolution of cytopenia, and should be considered for first-line treatment for Ghosal hematodiaphyseal dysplasia syndrome.


Subject(s)
Anemia, Refractory , Anemia , Pancytopenia , Adult , Child , Humans , Anemia, Refractory/drug therapy , Anemia, Refractory/genetics , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anemia/drug therapy , Prostaglandin H2 , Syndrome , Bone Marrow Failure Disorders
2.
Arterioscler Thromb Vasc Biol ; 44(3): 558-583, 2024 03.
Article in English | MEDLINE | ID: mdl-38269585

ABSTRACT

Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.


Subject(s)
Heart Failure , Hypertension , Humans , Prostaglandins , Vascular Remodeling , Cyclooxygenase 2 Inhibitors/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Cyclooxygenase 2 , Heart Failure/chemically induced , Hypertension/chemically induced
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660804

ABSTRACT

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Subject(s)
Blood Platelets , Cyclooxygenase 1 , Disease Models, Animal , Integrases , Mice, Inbred C57BL , Mice, Knockout , Platelet Aggregation , Platelet Factor 4 , Receptors, LDL , Animals , Blood Platelets/metabolism , Blood Platelets/drug effects , Blood Platelets/enzymology , Cyclooxygenase 1/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/deficiency , Platelet Aggregation/drug effects , Platelet Factor 4/genetics , Platelet Factor 4/metabolism , Integrases/genetics , Receptors, LDL/genetics , Receptors, LDL/deficiency , Male , Mice , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/enzymology , Atherosclerosis/prevention & control , Atherosclerosis/blood , Hyperlipidemias/blood , Hyperlipidemias/genetics , Hyperlipidemias/enzymology , Phenotype , Membrane Proteins , Platelet Glycoprotein GPIb-IX Complex
4.
Nature ; 569(7754): 73-78, 2019 05.
Article in English | MEDLINE | ID: mdl-30996346

ABSTRACT

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte-macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E2. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.


Subject(s)
Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neutrophils/metabolism , Aged , Animals , Arachidonic Acid/metabolism , Dinoprostone/metabolism , Fatty Acid Transport Proteins/antagonists & inhibitors , Female , Humans , Lipid Metabolism , Lipids , Male , Mice , Middle Aged , Neutrophils/pathology , STAT5 Transcription Factor/metabolism
5.
Annu Rev Med ; 72: 473-495, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33502899

ABSTRACT

More than a century after its synthesis, daily aspirin, given at a low dose, is a milestone treatment for the secondary prevention of cardiovascular disease (CVD). Its role in primary prevention of CVD is still debated. Older randomized controlled trials showed that aspirin reduced the low incidence of myocardial infarction but correspondingly increased the low incidence of serious gastrointestinal bleeds without altering mortality. More recent trials see the benefit attenuated, perhaps obscured by other cardioprotective practices, while the bleeding risk remains, especially in older patients. Indirect evidence, both preclinical and clinical, suggests that aspirin may protect against sporadic colorectal cancer and perhaps other cancers. However, further studies are still necessary to warrant the consumption of aspirin for primary prevention of CVD and cancer by apparently healthy individuals.


Subject(s)
Aspirin/pharmacology , Cardiovascular Diseases/prevention & control , Neoplasms/prevention & control , Primary Prevention/methods , Risk Assessment/methods , Secondary Prevention/methods , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cardiovascular Diseases/epidemiology , Global Health , Humans , Incidence , Neoplasms/epidemiology
6.
Adv Exp Med Biol ; 1274: 29-54, 2020.
Article in English | MEDLINE | ID: mdl-32894506

ABSTRACT

Prostanoids (prostaglandins, prostacyclin and thromboxane) belong to the oxylipin family of biologically active lipids generated from arachidonic acid (AA). Protanoids control numerous physiological and pathological processes. Cyclooxygenase (COX) is a rate-limiting enzyme involved in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2. COX-1 and COX-2 have similar structures, catalytic activities, and subcellular localizations but differ in patterns of expression and biological functions. Non-selective COX-1/2 or traditional, non-steroidal anti-inflammatory drugs (tNSAIDs) target both COX isoforms and are widely used to relieve pain, fever and inflammation. However, the use of NSAIDs is associated with various side effects, particularly in the gastrointestinal tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare gastrointestinal toxicity, but predisposed patients to increased cardiovascular risks. These health complications from NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This chapter describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the prostanoid pathway, including nitrogen oxide- and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.


Subject(s)
Prostaglandin Antagonists/pharmacology , Prostaglandin Antagonists/therapeutic use , Prostaglandins/metabolism , Signal Transduction/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Humans , Prostaglandin-Endoperoxide Synthases/metabolism
7.
Circulation ; 138(21): 2367-2378, 2018 11 20.
Article in English | MEDLINE | ID: mdl-29930022

ABSTRACT

BACKGROUND: Large-scale, placebo-controlled trials established that nonsteroidal anti-inflammatory drugs confer a cardiovascular hazard: this has been attributed to depression of cardioprotective products of cyclooxygenase (COX)-2, especially prostacyclin. An alternative mechanism by which nonsteroidal anti-inflammatory drugs might constrain cardioprotection is by enhancing the formation of methylarginines in the kidney that would limit the action of nitric oxide throughout the vasculature. METHODS: Targeted and untargeted metabolomics were used to investigate the effect of COX-2 deletion or inhibition in mice and in osteoarthritis patients exposed to nonsteroidal anti-inflammatory drugs on the l-arginine/nitric oxide pathway. RESULTS: Analysis of the plasma and renal metabolome was performed in postnatal tamoxifen-inducible Cox-2 knockout mice, which exhibit normal renal function and blood pressure. This revealed no changes in arginine and methylarginines compared with their wild-type controls. Moreover, the expression of genes in the l-arginine/nitric oxide pathway was not altered in the renal medulla or cortex of tamoxifen inducible Cox-2 knockout mice. Therapeutic concentrations of the selective COX-2 inhibitors, rofecoxib, celecoxib, and parecoxib, none of which altered basal blood pressure or renal function as reflected by plasma creatinine, failed to elevate plasma arginine and methylarginines in mice. Finally, plasma arginine or methylarginines were not altered in osteoarthritis patients with confirmed exposure to nonsteroidal anti-inflammatory drugs that inhibit COX-1 and COX-2. By contrast, plasma asymmetrical dimethylarginine was increased in mice infused with angiotensin II sufficient to elevate blood pressure and impair renal function. Four weeks later, blood pressure, plasma creatinine, and asymmetrical dimethylarginine were restored to normal levels. The increase in asymmetrical dimethylarginine in response to infusion with angiotensin II in celecoxib-treated mice was also related to transient impairment of renal function. CONCLUSIONS: Plasma methylarginines are not altered by COX-2 deletion or inhibition but rather are elevated coincident with renal compromise.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Arginine/analogs & derivatives , Cardiovascular Diseases/etiology , Cyclooxygenase 2/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/blood , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arginine/blood , Blood Pressure/drug effects , Blood Urea Nitrogen , Celecoxib/pharmacology , Creatinine/blood , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2 Inhibitors/pharmacology , Humans , Kidney/metabolism , Metabolome/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Placebo Effect
8.
J Pharmacol Exp Ther ; 370(3): 416-426, 2019 09.
Article in English | MEDLINE | ID: mdl-31248980

ABSTRACT

Inflammatory bowel disease (IBD) is associated with an increased risk for thromboembolism, platelet activation, and abnormalities in platelet number and size. In colitis, platelets can extravasate into the colonic interstitium. We generated a mouse with a specific deletion of cyclooxygenase (COX)-1 in megakaryocytes/platelets [(COX-1 conditional knockout (cKO)] to clarify the role of platelet activation in the development of inflammation and fibrosis in dextran sodium sulfate (DSS)-induced colitis. The disease activity index was assessed, and colonic specimens were evaluated for histologic features of epithelial barrier damage, inflammation, and fibrosis. Cocultures of platelets and myofibroblasts were performed. We found that the specific deletion of COX-1 in platelets, which recapitulated the human pharmacodynamics of low-dose aspirin, that is, suppression of platelet thromboxane (TX)A2 production associated with substantial sparing of the systemic production of prostacyclin, resulted in milder symptoms of colitis, in the acute phase, and almost complete recovery from the disease after DSS withdrawal. Reduced colonic accumulation of macrophages and myofibroblasts and collagen deposition was found. Platelet-derived TXA2 enhanced the ability of myofibroblasts to proliferate and migrate in vitro, and these effects were prevented by platelet COX-1 inhibition or antagonism of the TXA2 receptor. Our findings allow a significant advance in the knowledge of the role of platelet-derived TXA2 in the development of colitis and fibrosis in response to intestinal damage and provide the rationale to investigate the potential efficacy of the antiplatelet agent low-dose aspirin in limiting the inflammatory response and fibrosis associated with IBD. SIGNIFICANCE STATEMENT: Inflammatory bowel disease (IBD) is characterized by the development of a chronic inflammatory response, which can lead to intestinal fibrosis for which currently there is no medical treatment. Through the generation of a mouse with specific deletion of cyclooxygenase-1 in megakaryocytes/platelets, which recapitulates the human pharmacodynamics of low-dose aspirin, we demonstrate the important role of platelet-derived thromboxane A2 in the development of experimental colitis and fibrosis, thus providing the rationale to investigate the potential efficacy of low-dose aspirin in limiting the inflammation and tissue damage associated with IBD.


Subject(s)
Blood Platelets/metabolism , Colitis/chemically induced , Colitis/enzymology , Cyclooxygenase 1/deficiency , Cyclooxygenase 1/genetics , Dextran Sulfate/pharmacology , Gene Deletion , Animals , Blood Platelets/drug effects , Blood Platelets/pathology , Colitis/blood , Colitis/genetics , Colon/drug effects , Colon/metabolism , Colon/pathology , Humans , Megakaryocytes/drug effects , Megakaryocytes/metabolism , Mice , Myofibroblasts/drug effects , Myofibroblasts/pathology , Prostaglandins/biosynthesis
9.
Pharmacol Res ; 149: 104456, 2019 11.
Article in English | MEDLINE | ID: mdl-31553935

ABSTRACT

Prostaglandins (PG) are pleiotropic bioactive lipids involved in the control of many physiological processes, including key roles in regulating inflammation. This links PG to the modulation of the quality and magnitude of immune responses. T cells, as a core part of the immune system, respond readily to inflammatory cues from their environment, and express a diverse array of PG receptors that contribute to their function and phenotype. Here we put in context our knowledge about how PG affect T cell biology, and review advances that bring light into how specific T cell functions that have been newly discovered are modulated through PG. We will also comment on drugs that target PG metabolism and sensing, their effect on T cell function during disease, and we will finally discuss how we can design new approaches that modulate PG in order to maximize desired therapeutic T cell effects.


Subject(s)
Prostaglandins/immunology , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Cell Differentiation/drug effects , Drug Discovery , Humans , Immunity/drug effects , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Prostaglandins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
10.
J Pharmacol Exp Ther ; 367(3): 425-432, 2018 12.
Article in English | MEDLINE | ID: mdl-30305427

ABSTRACT

Prostaglandin (PG) D2 is formed by two distinct PGD synthases (PGDS): lipocalin-type PGDS (L-PGDS), which acts as a PGD2-producing enzyme and as extracellular lipophilic transporter, and hematopoietic PGDS (H-PGDS), a σ glutathione-S-transferase. PGD2 plays an important role in the maintenance of vascular function; however, the relative contribution of L-PGDS- and H-PGDS-dependent formation of PGD2 in this setting is unknown. To gain insight into the function played by these distinct PGDS, we assessed systemic blood pressure (BP) and thrombogenesis in L-Pgds and H-Pgds knockout (KO) mice. Deletion of L-Pgds depresses urinary PGD2 metabolite (PGDM) by ∼35%, whereas deletion of H-Pgds does so by ∼90%. Deletion of L-Pgds, but not H-Pgds, elevates BP and accelerates the thrombogenic occlusive response to a photochemical injury to the carotid artery. HQL-79, a H-PGDS inhibitor, further depresses PGDM in L-Pgds KO mice, but has no effect on BP or on the thrombogenic response. Gene expression profiling reveals that pathways relevant to vascular function are dysregulated in the aorta of L-Pgds KOs. These results indicate that the functional impact of L-Pgds deletion on vascular homeostasis may result from an autocrine effect of L-PGDS-dependent PGD2 on the vasculature and/or the L-PGDS function as lipophilic carrier protein.


Subject(s)
Hypertension/genetics , Intramolecular Oxidoreductases/genetics , Lipocalins/genetics , Prostaglandin D2/genetics , Sequence Deletion/genetics , Animals , Carotid Arteries/pathology , Glutathione Transferase/genetics , Male , Mice , Mice, Knockout
11.
BMC Genomics ; 18(1): 602, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28797240

ABSTRACT

BACKGROUND: Though Illumina has largely dominated the RNA-Seq field, the simultaneous availability of Ion Torrent has left scientists wondering which platform is most effective for differential gene expression (DGE) analysis. Previous investigations of this question have typically used reference samples derived from cell lines and brain tissue, and do not involve biological variability. While these comparisons might inform studies of tissue-specific expression, marked by large-scale transcriptional differences, this is not the common use case. RESULTS: Here we employ a standard treatment/control experimental design, which enables us to evaluate these platforms in the context of the expression differences common in differential gene expression experiments. Specifically, we assessed the hepatic inflammatory response of mice by assaying liver RNA from control and IL-1ß treated animals with both the Illumina HiSeq and the Ion Torrent Proton sequencing platforms. We found the greatest difference between the platforms at the level of read alignment, a moderate level of concordance at the level of DGE analysis, and nearly identical results at the level of differentially affected pathways. Interestingly, we also observed a strong interaction between sequencing platform and choice of aligner. By aligning both real and simulated Illumina and Ion Torrent data with the twelve most commonly-cited aligners in the literature, we observed that different aligner and platform combinations were better suited to probing different genomic features; for example, disentangling the source of expression in gene-pseudogene pairs. CONCLUSIONS: Taken together, our results indicate that while Illumina and Ion Torrent have similar capacities to detect changes in biology from a treatment/control experiment, these platforms may be tailored to interrogate different transcriptional phenomena through careful selection of alignment software.


Subject(s)
Gene Expression Profiling , Sequence Analysis, RNA/methods , Algorithms , High-Throughput Nucleotide Sequencing
12.
Circ Res ; 112(3): 432-40, 2013 02 01.
Article in English | MEDLINE | ID: mdl-23250985

ABSTRACT

RATIONALE: Human genetics have implicated the 5-lipoxygenase enzyme in the pathogenesis of cardiovascular disease, and an inhibitor of the 5-lipoxygenase activating protein (FLAP) is in clinical development for asthma. OBJECTIVE: Here we determined whether FLAP deletion modifies the response to vascular injury. METHODS AND RESULTS: Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout mice and wild-type controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP knockouts, whereas endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP knockout macrophages was depressed, and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B(4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C, which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin, and upregulation of vascular cell adhesion molecule-1 was also suppressed in FLAP knockout mice. Transplantation of FLAP-replete myeloid cells rescued the proliferative response to vascular injury. CONCLUSIONS: Expression of lesional FLAP in myeloid cells promotes leukotriene B(4)-dependent VSMC phenotypic modulation, intimal migration, and proliferation.


Subject(s)
5-Lipoxygenase-Activating Proteins/metabolism , Cell Movement , Cell Proliferation , Muscle, Smooth, Vascular/enzymology , Myeloid Cells/enzymology , Myocytes, Smooth Muscle/enzymology , Vascular System Injuries/prevention & control , 5-Lipoxygenase-Activating Proteins/deficiency , 5-Lipoxygenase-Activating Proteins/genetics , Animals , Bone Marrow Transplantation , Cells, Cultured , Cysteine/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Femoral Artery/enzymology , Femoral Artery/injuries , Femoral Artery/pathology , Genotype , Hyperplasia , Inflammation Mediators/metabolism , Leukotriene B4/metabolism , Leukotrienes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myeloid Cells/immunology , Myeloid Cells/transplantation , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/pathology , Neointima , Phenotype , Tenascin/metabolism , Time Factors , Vascular Cell Adhesion Molecule-1/metabolism , Vascular System Injuries/enzymology , Vascular System Injuries/genetics , Vascular System Injuries/immunology , Vascular System Injuries/pathology
13.
Proc Natl Acad Sci U S A ; 109(17): 6727-32, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22493243

ABSTRACT

Suppression of cyclooxygenase 2 (COX-2)-derived prostacyclin (PGI(2)) is sufficient to explain most elements of the cardiovascular hazard from nonsteroidal antinflammatory drugs (NSAIDs). However, randomized trials are consistent with the emergence of cardiovascular risk during chronic dosing with NSAIDs. Although deletion of the PGI(2) receptor fosters atherogenesis, the importance of COX-2 during development has constrained the use of conventional knockout (KO) mice to address this question. We developed mice in which COX-2 was deleted postnatally, bypassing cardiorenal defects exhibited by conventional KOs. When crossed into ApoE-deficient hyperlipidemic mice, COX-2 deletion accelerated atherogenesis in both genders, with lesions exhibiting leukocyte infiltration and phenotypic modulation of vascular smooth muscle cells, as reflected by loss of α-smooth muscle cell actin and up-regulation of vascular cell adhesion molecule-1. Stimulated peritoneal macrophages revealed suppression of COX-2-derived prostanoids and augmented 5-lipoxygenase product formation, consistent with COX-2 substrate rediversion. Although deletion of the 5-lipoxygenase activating protein (FLAP) did not influence atherogenesis, it attenuated the proatherogeneic impact of COX-2 deletion in hyperlipidemic mice. Chronic administration of NSAIDs may increasingly confer a cardiovascular hazard on patients at low initial risk. Promotion of atherogenesis by postnatal COX-2 deletion affords a mechanistic explanation for this observation. Coincident inhibition of FLAP may offer an approach to attenuating such a risk from NSAIDs.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Atherosclerosis/metabolism , Cyclooxygenase 2/metabolism , Animals , Atherosclerosis/enzymology , Cyclooxygenase 2/genetics , Mice , Mice, Knockout , Substrate Specificity
14.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005376

ABSTRACT

Immune checkpoint inhibitors (ICIs) that target programmed cell death 1 (PD-1) have revolutionized cancer treatment by enabling the restoration of suppressed T-cell cytotoxic responses. However, resistance to single-agent ICIs limits their clinical utility. Combinatorial strategies enhance their antitumor effects, but may also enhance the risk of immune related adverse effects of ICIs. Prostaglandin (PG) E2, formed by the sequential action of the cyclooxygenase (COX) and microsomal PGE synthase (mPGES-1) enzymes, acting via its E prostanoid (EP) receptors, EPr2 and EPr4, promotes lymphocyte exhaustion, revealing an additional target for ICIs. Thus, COX inhibitors and EPr4 antagonists are currently being combined with ICIs potentially to enhance antitumor efficacy in clinical trials. However, given the cardiovascular (CV) toxicity of COX inhibitors, such combinations may increase the risk particularly of CV AEs. Here, we compared the impact of distinct approaches to disruption of the PGE2 synthesis /response pathway - global or myeloid cell specific depletion of mPges-1 or global depletion of Epr4 - on the accelerated atherogenesis in Pd-1 deficient hyperlipidemic (Ldlr-/-) mice. All strategies restrained the atherogenesis. While depletion of mPGES-1 suppresses PGE2 biosynthesis, reflected by its major urinary metabolite, PGE2 biosynthesis was increased in mice lacking EPr4, consistent with enhanced expression of aortic Cox-1 and mPges-1. Deletions of mPges-1 and Epr4 differed in their effects on immune cell populations in atherosclerotic plaques; the former reduced neutrophil infiltration, while the latter restrained macrophages and increased the infiltration of T-cells. Consistent with these findings, chemotaxis by bone-marrow derived macrophages from Epr4-/- mice was impaired. Epr4 depletion also resulted in extramedullary lymphoid hematopoiesis and inhibition of lipoprotein lipase activity (LPL) with coincident spelenomegaly, leukocytosis and dyslipidemia. Targeting either mPGES-1 or EPr4 may restrain lymphocyte exhaustion while mitigating CV irAEs consequent to PD-1 blockade.

15.
Biochim Biophys Acta ; 1820(12): 2095-104, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22951221

ABSTRACT

BACKGROUND: Previous reports suggest that NO may contribute to the pathophysiology of septic shock. Recently, we have synthesized and characterized a series of benzyl- and dibenzyl derivative of N-(3-aminobenzyl)acetamidine, a potent and selective inhibitor of iNOS, in vitro assay. We evaluated the molecular mechanisms by which these compounds are involved in the regulation of NOSs expression. METHODS: H9c2 cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of acetamidine-derivative. The NOSs mRNA and protein, and activation of signaling pathways (Akt and NF-κB) were assayed. RESULTS: The induction of endotoxic shock in H9c2 with LPS caused an increase of inducible NOS and a down-regulation of constitutive NOS. The molecular mechanism involved in the modulation of NOSs expression in H9c2 cells upon LPS stimulation resulted in the modification of the redox state responsible for NF-kB nuclear translocation via NIK -IKKα/ß-IkBα, simultaneously to the inactivation of the PI3K/Akt pathway. The compounds acted as an anti-inflammatory modulator. CONCLUSION: These results suggest that LPS regulates the opposite NOS expression in H9c2 cells by modifying the redox state of these cells responsible for the NF-kB nuclear translocation via NIK-IKKα/ß-IkBα, simultaneous to the inactivation of the PI3K/Akt pathway. The new molecule acts as an anti-inflammatory modulator in LPS-induced inflammation in H9c2 cells by the restoration of eNOS and nNOS expressions, mechanistically involving the PI3K/Akt pathway. GENERAL SIGNIFICANCE: This study delineates the underlying mechanisms of opposite NOSs expression in H9c2 cells stimulated with LPS.


Subject(s)
Amidines/pharmacology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Myoblasts, Cardiac/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Flow Cytometry , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inflammation/chemically induced , Inflammation/pathology , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/drug effects , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitrites/metabolism , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Messenger/genetics , Rats , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
16.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37398323

ABSTRACT

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.

17.
Clin Transl Med ; 13(11): e1440, 2023 11.
Article in English | MEDLINE | ID: mdl-37948331

ABSTRACT

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Subject(s)
COVID-19 , Phospholipases A2, Secretory , Sepsis , Humans , SARS-CoV-2 , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Lipidomics , Leukocytes, Mononuclear , Leukotriene E4 , Prostaglandin D2 , Cyclooxygenase 2 , Eicosanoids
18.
J Pharmacol Exp Ther ; 341(1): 242-50, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22262921

ABSTRACT

Vascular cyclooxygenase (COX)-2-dependent prostacyclin (PGI(2)) may affect angiogenesis by preventing endothelial activation and platelet release of angiogenic factors present in platelet α-granules. Thus, a profound inhibition of COX-2-dependent PGI(2) might be associated with changes in circulating markers of angiogenesis. We aimed to address this issue by performing a clinical study with celecoxib in familial adenomatous polyposis (FAP). In nine patients with FAP and healthy controls, pair-matched for gender and age, we compared systemic biosynthesis of PGI(2), thromboxane (TX) A(2), and prostaglandin (PG) E(2), assessing their urinary enzymatic metabolites, 2,3-dinor-6-keto PGF(1α) (PGI-M), 11-dehydro-TXB(2) (TX-M), and 11-α-hydroxy-9,15-dioxo-2,3,4,5-tetranor-prostane-1,20-dioic acid (PGE-M), respectively. The impact of celecoxib (400 mg b.i.d. for 7 days) on prostanoid biosynthesis and 14 circulating biomarkers of angiogenesis was evaluated in FAP. Intestinal tumorigenesis was associated with enhanced urinary TX-M levels, but unaffected by celecoxib, suggesting the involvement of a COX-1-dependent pathway, presumably from platelets. This was supported by the finding that in cocultures of a human colon adenocarcinoma cell line (HT-29) and platelets enhanced TXA(2) generation was almost completely inhibited by pretreatment of platelets with aspirin, a preferential inhibitor of COX-1. In FAP, celecoxib profoundly suppressed PGE(2) and PGI(2) biosynthesis that was associated with a significant increase in circulating levels of most proangiogenesis proteins but also the antiangiogenic tissue inhibitor of metalloproteinase 2. Urinary PGI-M, but not PGE-M, was negatively correlated with circulating levels of fibroblast growth factor 2 and angiogenin. In conclusion, inhibition of tumor COX-2-dependent PGE(2) by celecoxib may reduce tumor progression. However, the coincident depression of vascular PGI(2), in a context of enhanced TXA(2) biosynthesis, may modulate the attendant angiogenesis, contributing to variability in the chemopreventive efficacy of COX-2 inhibitors such as celecoxib.


Subject(s)
Adenomatous Polyposis Coli/blood , Neovascularization, Physiologic/physiology , Prostaglandins/biosynthesis , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Adenomatous Polyposis Coli/drug therapy , Adult , Animals , Celecoxib , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Epoprostenol/antagonists & inhibitors , Epoprostenol/biosynthesis , Female , HT29 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Neovascularization, Physiologic/drug effects , Prostaglandins/blood , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Thromboxane A2/antagonists & inhibitors , Thromboxane A2/biosynthesis , Treatment Outcome , Vascular Endothelial Growth Factor A/blood
19.
Bioconjug Chem ; 23(11): 2313-9, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23075169

ABSTRACT

To allow visualization of macrophage-rich and miniature-sized atheromas by magnetic resonance (MR) imaging, we have converted low-density lipoprotein (LDL) into MR-active nanoparticles via the intercalation of a 1,4,7,10-tetraazacyclodecane-1,4,7-triacetic acid (DO3A) derivative and the subsequent coordination reaction with Gd(3+). After careful removal of nonchelated Gd(3+), an MR-active LDL (Gd(3+)-LDL) with a remarkably high payload of Gd(3+) (in excess of 200 Gd(3+) atoms per particle) and a high relaxivity (r(1) = 20.1 s(-1) mM(-1) per Gd(3+) or 4040 s(-1) mM(-1) per LDL) was obtained. Dynamic light-scattering photon correlation spectroscopy (DLS) and cryo transmission electron microscope (cryoTEM) images showed that Gd(3+)-LDL particles did not aggregate and remained of a similar size (25-30 nm) to native LDL. Intravenous injection of Gd(3+)-LDL into an atherosclerotic mouse model (ApoE(-/-)) resulted in an extremely high enhancement of the atheroma-bearing aortic walls at 48 h after injection. Free Gd(3+) dissociation from Gd(3+)-LDL was not detected over the imaging time window (96 h). Because autologous LDL can be isolated, modified, and returned to the same patient, our results suggest that MR-active LDL can potentially be used as a noninfectious and nonimmunogenic imaging probe for the enhancement of atheroplaques presumably via the uptake into macrophages inside the plaque.


Subject(s)
Atherosclerosis/diagnosis , Lipoproteins, LDL , Magnetic Resonance Imaging , Nanoparticles , Organometallic Compounds , Radiopharmaceuticals , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Disease Models, Animal , Gadolinium/chemistry , Gadolinium/pharmacokinetics , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Humans , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/pharmacokinetics , Mice , Mice, Inbred C57BL , Molecular Structure , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
20.
Arterioscler Thromb Vasc Biol ; 31(5): 986-1000, 2011 May.
Article in English | MEDLINE | ID: mdl-21508345

ABSTRACT

Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.


Subject(s)
Inflammation Mediators/metabolism , Inflammation/immunology , Prostaglandins/metabolism , Signal Transduction , Animals , Cyclooxygenase Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Prostaglandin-Endoperoxide Synthases/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction/drug effects , Thromboxanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL