Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422817

ABSTRACT

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Subject(s)
DEAD-box RNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Proto-Oncogene Proteins/genetics , RNA/genetics , Humans
2.
Hum Genet ; 138(11-12): 1409-1417, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31748968

ABSTRACT

Pelizaeus-Merzbacher-like disease (PMLD) is an autosomal recessive hypomyelinating leukodystrophy, which is clinically and radiologically similar to X-linked Pelizaeus-Merzbacher disease (PMD). PMLD is characterized by early-onset nystagmus, delayed development (motor delay, speech delay and dysarthria), dystonia, hypotonia typically evolving into spasticity, ataxia, seizures, optic atrophy, and diffuse leukodystrophy on magnetic resonance imaging (MRI). We identified a 12-year-old Caucasian/Hispanic male with the classical clinical characteristics of PMLD with lack of myelination of the subcortical white matter, and absence of the splenium of corpus callosum. Exome sequencing in the trio revealed novel compound heterozygous pathogenic mutations in SNAP29 (p.Leu119AlafsX15, c.354DupG and p.0?, c.2T > C). Quantitative analysis of the patient's blood cells through RNA sequencing identified a significant decrease in SNAP29 mRNA expression, while western blot analysis on fibroblast cells revealed a lack of protein expression compared to parental and control cells. Mutations in SNAP29 have previously been associated with cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK) syndrome. Typical skin features described in CEDNIK syndrome, such as generalized ichthyosis and keratoderma, were absent in our patient. Moreover, the early onset nystagmus and leukodystrophy were consistent with a PMLD diagnosis. These findings suggest that loss of SNAP29 function, which was previously associated with CEDNIK syndrome, is also associated with PMLD. Overall, our study expands the genetic spectrum of PMLD.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/pathology , Heterozygote , Mutation , Qb-SNARE Proteins/genetics , Qc-SNARE Proteins/genetics , Child , Humans , Male , Prognosis , Exome Sequencing
3.
Am J Hum Genet ; 98(5): 909-918, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27132593

ABSTRACT

The proteins encoded by TELO2, TTI1, and TTI2 interact to form the TTT complex, a co-chaperone for maturation of the phosphatidylinositol 3-kinase-related protein kinases (PIKKs). Here we report six affected individuals from four families with intellectual disability (ID) and neurological and other congenital abnormalities associated with compound heterozygous variants in TELO2. Although their fibroblasts showed reduced steady-state levels of TELO2 and the other components of the TTT complex, PIKK functions were normal in cellular assays. Our results suggest that these TELO2 missense variants result in loss of function, perturb TTT complex stability, and cause an autosomal-recessive syndromic form of ID.


Subject(s)
Intellectual Disability/etiology , Molecular Chaperones/genetics , Protein Serine-Threonine Kinases/genetics , Telomere-Binding Proteins/genetics , Adolescent , Carrier Proteins/genetics , Child , Female , Humans , Intracellular Signaling Peptides and Proteins , Male , Pedigree , Phosphatidylinositol 3-Kinases/genetics
4.
Am J Med Genet A ; 176(7): 1549-1558, 2018 07.
Article in English | MEDLINE | ID: mdl-30160831

ABSTRACT

Chromosome 1q41-q42 deletions have recently been associated with a recognizable neurodevelopmental syndrome of early childhood (OMIM 612530). Within this group, a predominant phenotype of developmental delay (DD), intellectual disability (ID), epilepsy, distinct dysmorphology, and brain anomalies on magnetic resonance imaging/computed tomography has emerged. Previous reports of patients with de novo deletions at 1q41-q42 have led to the identification of an evolving smallest region of overlap which has included several potentially causal genes including DISP1, TP53BP2, and FBXO28. In a recent report, a cohort of patients with de novo mutations in WDR26 was described that shared many of the clinical features originally described in the 1q41-q42 microdeletion syndrome (MDS). Here, we describe a novel germline FBXO28 frameshift mutation in a 3-year-old girl with intractable epilepsy, ID, DD, and other features which overlap those of the 1q41-q42 MDS. Through a familial whole-exome sequencing study, we identified a de novo FBXO28 c.972_973delACinsG (p.Arg325GlufsX3) frameshift mutation in the proband. The frameshift and resulting premature nonsense mutation have not been reported in any genomic database. This child does not have a large 1q41-q42 deletion, nor does she harbor a WDR26 mutation. Our case joins a previously reported patient also in whom FBXO28 was affected but WDR26 was not. These findings support the idea that FBXO28 is a monogenic disease gene and contributes to the complex neurodevelopmental phenotype of the 1q41-q42 gene deletion syndrome.


Subject(s)
Body Dysmorphic Disorders/genetics , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Developmental Disabilities/genetics , Drug Resistant Epilepsy/genetics , Frameshift Mutation , SKP Cullin F-Box Protein Ligases/genetics , Body Dysmorphic Disorders/pathology , Child, Preschool , Developmental Disabilities/pathology , Drug Resistant Epilepsy/pathology , Exome , Female , Humans , Phenotype , Prognosis , Exome Sequencing
5.
Cells ; 12(10)2023 05 21.
Article in English | MEDLINE | ID: mdl-37408271

ABSTRACT

Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.


Subject(s)
Neurodevelopmental Disorders , Rett Syndrome , Humans , Rett Syndrome/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation/genetics , Phenotype , Transcription Factors/genetics
6.
Oncotarget ; 12(8): 726-739, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33889297

ABSTRACT

We developed and analytically validated a comprehensive genomic profiling (CGP) assay, GEM ExTra, for patients with advanced solid tumors that uses Next Generation Sequencing (NGS) to characterize whole exomes employing a paired tumor-normal subtraction methodology. The assay detects single nucleotide variants (SNV), indels, focal copy number alterations (CNA), TERT promoter region, as well as tumor mutation burden (TMB) and microsatellite instability (MSI) status. Additionally, the assay incorporates whole transcriptome sequencing of the tumor sample that allows for the detection of gene fusions and select special transcripts, including AR-V7, EGFR vIII, EGFRvIV, and MET exon 14 skipping events. The assay has a mean target coverage of 180X for the normal (germline) and 400X for tumor DNA including enhanced probe design to facilitate the sequencing of difficult regions. Proprietary bioinformatics, paired with comprehensive clinical curation results in reporting that defines clinically actionable, FDA-approved, and clinical trial drug options for the management of the patient's cancer. GEM ExTra demonstrated analytic specificity (PPV) of > 99.9% and analytic sensitivity of 98.8%. Application of GEM ExTra to 1,435 patient samples revealed clinically actionable alterations in 83.9% of reports, including 31 (2.5%) where therapeutic recommendations were based on RNA fusion findings only.

7.
Sci Data ; 8(1): 276, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711851

ABSTRACT

Circular RNA (circRNA) are a recently discovered class of RNA characterized by a covalently-bonded back-splice junction. As circRNAs are inherently more stable than other RNA species, they may be detected extracellularly in peripheral biofluids and provide novel biomarkers. While circRNA have been identified previously in peripheral biofluids, there are few datasets for circRNA junctions from healthy controls. We collected 134 plasma and 114 urine samples from 54 healthy, male college athlete volunteers, and used RNASeq to determine circRNA content. The intersection of six bioinformatic tools identified 965 high-confidence, characteristic circRNA junctions in plasma and 72 in urine. Highly-expressed circRNA junctions were validated by qRT-PCR. Longitudinal samples were collected from a subset, demonstrating circRNA expression was stable over time. Lastly, the ratio of circular to linear transcripts was higher in plasma than urine. This study provides a valuable resource for characterization of circRNA in plasma and urine from healthy volunteers, one that can be developed and reassessed as researchers probe the circRNA contents of biofluids across physiological changes and disease states.


Subject(s)
Athletes , RNA, Circular/blood , RNA, Circular/urine , Adolescent , Healthy Volunteers , Humans , Male , RNA-Seq , Young Adult
8.
Neuropsychopharmacology ; 46(10): 1811-1820, 2021 09.
Article in English | MEDLINE | ID: mdl-34188182

ABSTRACT

Biomarkers that predict symptom trajectories after trauma can facilitate early detection or intervention for posttraumatic stress disorder (PTSD) and may also advance our understanding of its biology. Here, we aimed to identify trajectory-based biomarkers using blood transcriptomes collected in the immediate aftermath of trauma exposure. Participants were recruited from an Emergency Department in the immediate aftermath of trauma exposure and assessed for PTSD symptoms at baseline, 1, 3, 6, and 12 months. Three empirical symptom trajectories (chronic-PTSD, remitting, and resilient) were identified in 377 individuals based on longitudinal symptoms across four data points (1, 3, 6, and 12 months), using latent growth mixture modeling. Blood transcriptomes were examined for association with longitudinal symptom trajectories, followed by expression quantitative trait locus analysis. GRIN3B and AMOTL1 blood mRNA levels were associated with chronic vs. resilient post-trauma symptom trajectories at a transcriptome-wide significant level (N = 153, FDR-corrected p value = 0.0063 and 0.0253, respectively). We identified four genetic variants that regulate mRNA blood expression levels of GRIN3B. Among these, GRIN3B rs10401454 was associated with PTSD in an independent dataset (N = 3521, p = 0.04). Examination of the BrainCloud and GTEx databases revealed that rs10401454 was associated with brain mRNA expression levels of GRIN3B. While further replication and validation studies are needed, our data suggest that GRIN3B, a glutamate ionotropic receptor NMDA type subunit-3B, may be involved in the manifestation of PTSD. In addition, the blood mRNA level of GRIN3B may be a promising early biomarker for the PTSD manifestation and development.


Subject(s)
Stress Disorders, Post-Traumatic , Biomarkers , Humans , Stress Disorders, Post-Traumatic/genetics , Transcriptome
9.
J Alzheimers Dis ; 78(2): 721-734, 2020.
Article in English | MEDLINE | ID: mdl-33044176

ABSTRACT

BACKGROUND: Whether brain-derived neurotrophic factor (BDNF) Met carriage impacts the risk or progression of Alzheimer's disease (AD) is unknown. OBJECTIVE: To evaluate the interaction of BDNF Met and APOE4 carriage on cerebral metabolic rate for glucose (CMRgl), amyloid burden, hippocampus volume, and cognitive decline among cognitively unimpaired (CU) adults enrolled in the Arizona APOE cohort study. METHODS: 114 CU adults (mean age 56.85 years, 38% male) with longitudinal FDG PET, magnetic resonance imaging, and cognitive measures were BDNF and APOE genotyped. A subgroup of 58 individuals also had Pittsburgh B (PiB) PET imaging. We examined baseline CMRgl, PiB PET amyloid burden, CMRgl, and hippocampus volume change over time, and rate of change in cognition over an average of 15 years. RESULTS: Among APOE4 carriers, BDNF Met carriers had significantly increased amyloid deposition and accelerated CMRgl decline in regions typically affected by AD, but without accompanying acceleration of cognitive decline or hippocampal volume changes and with higher baseline frontal CMRgl and slower frontal decline relative to the Val/Val group. The BDNF effects were not found among APOE4 non-carriers. CONCLUSION: Our preliminary studies suggest that there is a weak interaction between BDNF Met and APOE4 on amyloid-ß plaque burden and longitudinal PET measurements of AD-related CMRgl decline in cognitively unimpaired late-middle-aged and older adults, but with no apparent effect upon rate of cognitive decline. We suggest that cognitive effects of BDNF variants may be mitigated by compensatory increases in frontal brain activity-findings that would need to be confirmed in larger studies.


Subject(s)
Alzheimer Disease/metabolism , Apolipoprotein E4/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/metabolism , Methionine/metabolism , Valine/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Brain-Derived Neurotrophic Factor/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cohort Studies , Female , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Methionine/genetics , Middle Aged , Positron-Emission Tomography/methods , Protein Binding/physiology , Valine/genetics
10.
Neurol Genet ; 6(4): e468, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32754643

ABSTRACT

OBJECTIVE: Description of a new variant of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) gene causing congenital myasthenic syndrome (CMS) in 3 children from 2 unrelated families. METHODS: Muscle biopsies, EMG, and whole-exome sequencing were performed. RESULTS: All 3 patients presented with congenital hypotonia, muscle weakness, respiratory insufficiency, head lag, areflexia, and gastrointestinal dysfunction. Genetic analysis identified a homozygous frameshift insertion in the GFPT1 gene (NM_001244710.1: c.686dupC; p.Arg230Ter) that was shared by all 3 patients. In one of the patients, inheritance of the variant was through uniparental disomy (UPD) with maternal origin. Repetitive nerve stimulation and single-fiber EMG was consistent with the clinical diagnosis of CMS with a postjunctional defect. Ultrastructural evaluation of the muscle biopsy from one of the patients showed extremely attenuated postsynaptic folds at neuromuscular junctions and extensive autophagic vacuolar pathology. CONCLUSIONS: These results expand on the spectrum of known loss-of-function GFPT1 mutations in CMS12 and in one family demonstrate a novel mode of inheritance due to UPD.

11.
Commun Biol ; 2: 266, 2019.
Article in English | MEDLINE | ID: mdl-31341965

ABSTRACT

Osteosarcoma (OS) is a rare, metastatic, human adolescent cancer that also occurs in pet dogs. To define the genomic underpinnings of canine OS, we performed multi-platform analysis of OS tumors from 59 dogs, including whole genome sequencing (n = 24) and whole exome sequencing (WES; n = 13) of primary tumors and matched normal tissue, WES (n = 10) of matched primary/metastatic/normal samples and RNA sequencing (n = 54) of primary tumors. We found that canine OS recapitulates features of human OS including low point mutation burden (median 1.98 per Mb) with a trend towards higher burden in metastases, high structural complexity, frequent TP53 (71%), PI3K pathway (37%), and MAPK pathway mutations (17%), and low expression of immune-associated genes. We also identified novel features of canine OS including putatively inactivating somatic SETD2 (42%) and DMD (50%) aberrations. These findings set the stage for understanding OS development in dogs and humans, and establish genomic contexts for future comparative analyses.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/veterinary , Dystrophin/genetics , Histone-Lysine N-Methyltransferase/genetics , Mutation , Osteosarcoma/genetics , Osteosarcoma/veterinary , Animals , Dogs , Whole Genome Sequencing
12.
Semin Pediatr Neurol ; 26: 28-32, 2018 07.
Article in English | MEDLINE | ID: mdl-29961512

ABSTRACT

Epileptic encephalopathies are childhood brain disorders characterized by a variety of severe epilepsy syndromes that differ by the age of onset and seizure type. Until recently, the cause of many epileptic encephalopathies was unknown. Whole exome or whole genome sequencing has led to the identification of several causal genes in individuals with epileptic encephalopathy, and the list of genes has now expanded greatly. Genetic testing with epilepsy gene panels is now done quite early in the evaluation of children with epilepsy, following brain imaging, electroencephalogram, and metabolic profile. Early infantile epileptic encephalopathy (EIEE1; OMIM #308350) is the earliest of these age-dependent encephalopathies, manifesting as tonic spasms, myoclonic seizures, or partial seizures, with severely abnormal electroencephalogram, often showing a suppression-burst pattern. In this case study, we describe a 33-month-old female child with severe, neonatal onset epileptic encephalopathy. An infantile epilepsy gene panel test revealed 2 novel heterozygous variants in the MECP2 gene; a 70-bp deletion resulting in a frameshift and truncation (p.Lys377ProfsX9) thought to be pathogenic, and a 6-bp in-frame deletion (p.His371_372del), designated as a variant of unknown significance. Based on this test result, the diagnosis of atypical Rett syndrome (RTT) was made. Family-based targeted testing and segregation analysis, however, raised questions about the pathogenicity of these specific MECP2 variants. Whole exome sequencing was performed in this family trio, leading to the discovery of a rare, de novo, missense mutation in GNAO1 (p. Leu284Ser). De novo, heterozygous mutations in GNAO1 have been reported to cause early infantile epileptic encephalopathy-17 (EIEE17; OMIM 615473). The child's severe phenotype, the family history and segregation analysis of variants and prior reports of GNAO1-linked disease allowed us to conclude that the GNAO1 mutation, and not the MECP2 variants, was the cause of this child's neurological disease. With the increased use of genetic panels and whole exome sequencing, we will be confronted with lists of gene variants suspected to be pathogenic or of unknown significance. It is important to integrate clinical information, genetic testing that includes family members and correlates this with the published clinical and scientific literature, to help one arrive at the correct genetic diagnosis.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Rett Syndrome/diagnosis , Rett Syndrome/genetics , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Child, Preschool , Diagnosis, Differential , Diagnostic Errors , Female , Humans , Methyl-CpG-Binding Protein 2/genetics , Phenotype
13.
Front Aging Neurosci ; 10: 155, 2018.
Article in English | MEDLINE | ID: mdl-29896098

ABSTRACT

Introduction: SuperAgers are adults age 80+ with episodic memory performance that is at least as good as that of average middle-aged adults. Understanding the biological determinants of SuperAging may have relevance to preventing age-related cognitive decline and dementia. This study aimed to identify associations between genetic variations and the SuperAging phenotype using Whole Exome Sequencing (WES). Methods: Sequence Kernel Association Combined (SKAT-C) test was conducted at the gene level including both rare and common variants in 56 SuperAgers and 22 cognitively-average controls from the Alzheimer's disease Neuroimaging Initiative (ADNI). Results: The SuperAging phenotype was associated with variants in the Mitogen-Activated Protein Kinase Kinase 3 (MAP2K3) gene. Three single nucleotide polymorphisms (SNPs) contributed to the significance (rs2363221 [intron 1], rs2230435 [exon 5], rs736103 [intron 7]). Conclusions: MAP2K3 resides in a biological pathway linked to memory. It is in a signaling cascade associated with beta-amyloid mediated apoptosis and has enriched expression in microglia. This preliminary work suggests MAP2K3 may represent a novel therapeutic target for age-related memory decline and perhaps Alzheimer's disease (AD).

14.
Front Aging Neurosci ; 9: 431, 2017.
Article in English | MEDLINE | ID: mdl-29375362

ABSTRACT

The resource modulation hypothesis suggests that the influence of genes on cognitive functioning increases with age. The KIBRA single nucleotide polymorphism rs17070145, associated with episodic memory and working memory, has been suggested to follow such a pattern, but few studies have tested this assertion directly. The present study investigated the relationship between KIBRA alleles (T carriers vs. CC homozygotes), cognitive performance, and brain volumes in three groups of cognitively healthy adults-middle aged (ages 52-64, n = 38), young old (ages 65-72, n = 45), and older old (ages 73-92, n = 62)-who were carefully matched on potentially confounding variables including apolipoprotein ε4 status and hypertension. Consistent with our prediction, T carriers maintained verbal memory performance with increasing age while CC homozygotes declined. Voxel-based morphometric analysis of magnetic resonance images showed an advantage for T carriers in frontal white matter volume that increased with age. Focusing on the older old group, this advantage for T carriers was also evident in left lingual gyrus gray matter and several additional frontal white matter regions. Contrary to expectations, neither KIBRA nor the interaction between KIBRA and age predicted hippocampal volumes. None of the brain regions investigated showed a CC homozygote advantage. Taken together, these data suggest that KIBRA results in decreased verbal memory performance and lower brain volumes in CC homozygotes compared to T carriers, particularly among the oldest old, consistent with the resource modulation hypothesis.

15.
Sci Rep ; 7: 44061, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303895

ABSTRACT

Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18-25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual's exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals.


Subject(s)
Cell-Free Nucleic Acids/analysis , RNA/analysis , Adolescent , Adult , Cell-Free Nucleic Acids/isolation & purification , Humans , Male , RNA/blood , RNA/isolation & purification , RNA/urine , Saliva/chemistry , Young Adult
16.
F1000Res ; 6: 553, 2017.
Article in English | MEDLINE | ID: mdl-28663785

ABSTRACT

Mutations disrupting presynaptic protein TBC1D24 are associated with a variable neurological phenotype, including DOORS syndrome, myoclonic epilepsy, early-infantile epileptic encephalopathy, and non-syndromic hearing loss. In this report, we describe a family segregating autosomal dominant epilepsy, and a 37-year-old Caucasian female with a severe neurological phenotype including epilepsy, Parkinsonism, psychosis, visual and auditory hallucinations, gait ataxia and intellectual disability. Whole exome sequencing revealed two missense mutations in the TBC1D24 gene segregating within this family (c.1078C>T; p.Arg360Cys and c.404C>T; p.Pro135Leu). The female proband who presents with a severe neurological phenotype carries both of these mutations in a compound heterozygous state. The p.Pro135Leu variant, however, is present in the proband's mother and sibling as well, and is consistent with an autosomal dominant pattern linked to tonic-clonic and myoclonic epilepsy. In conclusion, we describe a single family in which TBC1D24 mutations cause expanded dominant and recessive phenotypes. In addition, we discuss and highlight that some variants in TBC1D24 might cause a dominant susceptibility to epilepsy.

17.
Epigenomics ; 9(11): 1373-1386, 2017 11.
Article in English | MEDLINE | ID: mdl-28967789

ABSTRACT

AIM: To explore differential DNA methylation (DNAm) in Aicardi syndrome (AIC), a severe neurodevelopmental disorder with largely unknown etiology. PATIENTS & METHODS: We characterized DNAm in AIC female patients and parents using the Illumina 450 K array. Differential DNAm was assessed using the local outlier factor algorithm, and results were validated via qPCR in a larger set of AIC female patients, parents and unrelated young female controls. Functional epigenetic modules analysis was used to detect pathways integrating both genome-wide DNAm and RNA-seq data. RESULTS & CONCLUSION: We detected differential methylation patterns in AIC patients in several neurodevelopmental and/or neuroimmunological networks. These networks may be part of the underlying pathogenic mechanisms involved in the disease.


Subject(s)
Aicardi Syndrome/genetics , DNA Methylation , Epigenesis, Genetic , Adult , Algorithms , Female , Gene Regulatory Networks , Humans , Infant , Infant, Newborn , Male , Molecular Diagnostic Techniques/methods , Pedigree , Whole Genome Sequencing/methods
18.
Neurosurgery ; 78(6): 835-43, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26606670

ABSTRACT

BACKGROUND: Stress-induced cardiomyopathy (SIC) is a poorly understood condition associated with periods of emotional and physical stress. The clinical approaches for management of SIC are supportive and reactive to patient symptoms. OBJECTIVE: To utilize next-generation exome sequencing to define genetic variation associated with, and potentially responsible for, this disease. METHODS: We performed exome sequencing of 7 white female patients with SIC. Filtering of the identified variants was performed to limit our investigation to those sequences that passed quality control criteria, were rare or novel, were determined algorithmically to have high impact on the associated protein, and were within regions of high species conservation. All variants were verified by using Sanger sequencing. RESULTS: Exome-sequencing analysis revealed that each patient carried predicted deleterious variants affecting known cardiomyopathy genes. In each case, the identified variant was either not previously found in public human genome data or was previously annotated in a database of clinical variants associated with cardiac dysfunction. CONCLUSION: Patients with SIC harbor deleterious mutations in established cardiomyopathy genes at a level higher than healthy controls. We hypothesize that patients at highest risk for SIC likely live in a compensated state of cardiac dysfunction that manifests clinically only after the myocardium is stressed. In short, we propose that SIC is another example of an occult cardiomyopathy with a distinct physiological trigger and suggest that alternative clinical approaches to these patients may be warranted. ABBREVIATIONS: CADD, Combined Annotation Dependent DepletionFPKM, fragments per kilobase pair of exon per million fragments mappedNHLBI GO ESP, National Heart, Lung, and Blood Institute Grand Opportunity Exome Sequencing ProjectPCR, polymerase chain reactionSIC, stress-induced cardiomyopathy.


Subject(s)
Cardiomyopathies/genetics , Genetic Predisposition to Disease/genetics , Stress, Physiological/genetics , Stress, Psychological/genetics , Adult , Exome , Female , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Male , White People
19.
Cold Spring Harb Mol Case Stud ; 2(5): a000851, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27626064

ABSTRACT

Recently, mutations in the zinc finger MYND-type containing 11 (ZMYND11) gene were identified in patients with autism spectrum disorders, intellectual disability, aggression, and complex neuropsychiatric features, supporting that this gene is implicated in 10p15.3 microdeletion syndrome. We report a novel de novo variant in the ZMYND11 gene (p.Ser421Asn) in a patient with a complex neurodevelopmental phenotype. The patient is a 24-yr-old Caucasian/Filipino female with seizures, global developmental delay, sensorineural hearing loss, hypotonia, dysmorphic features, and other features including a happy disposition and ataxic gait similar to Angelman syndrome. In addition, this patient had uncommon features including eosinophilic esophagitis and multiple, severe allergies not described in similar ZMYND11 cases. This new case further supports the association of ZMYND11 with autistic-like phenotypes and suggests that ZMYND11 should be included in the list of potentially causative candidate genes in cases with complex neurodevelopmental phenotypes.

20.
Neurology ; 86(23): 2171-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27164704

ABSTRACT

OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. RESULTS: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. CONCLUSIONS: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Subject(s)
Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cohort Studies , Consanguinity , Heterozygote , Homozygote , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Movement Disorders/genetics , Movement Disorders/metabolism , Oocytes , Phenotype , Seizures/genetics , Seizures/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL