Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Immunol ; 50(4): 548-557, 2020 04.
Article in English | MEDLINE | ID: mdl-31841217

ABSTRACT

Non-Hodgkin orbital lymphoma (NHOL) and idiopathic orbital inflammation (IOI) are common orbital conditions with largely unknown pathophysiology. To investigate the immune cell composition of these diseases, we performed standardized 29 parameter flow cytometry phenotyping in peripheral blood mononuclear cells of 18 NHOL patients, 21 IOI patients, and 41 unaffected controls. Automatic gating by FlowSOM revealed decreased abundance of meta-clusters containing dendritic cells in patients, which we confirmed by manual gating. A decreased percentage of (HLA-DR+ CD303+ CD123+ ) plasmacytoid dendritic cells (pDC) in the circulation of IOI patients and decreased (HLA-DR+ CD11c+ CD1c+ ) conventional dendritic cells (cDC) type-2 for IOI patients were replicated in an independent cohort of patients and controls. Meta-analysis of both cohorts demonstrated that pDCs are also decreased in blood of NHOL patients and highlighted that the decrease in blood cDC type-2 was specific for IOI patients compared to NHOL or controls. Deconvolution-based estimation of immune cells in transcriptomic data of 48 orbital biopsies revealed a decrease in the abundance of pDC and cDC populations within the orbital microenvironment of IOI patients. Collectively, these data suggest a previously underappreciated role for dendritic cells in orbital disorders.


Subject(s)
Dendritic Cells/immunology , Inflammation/immunology , Lymphoma, Non-Hodgkin/immunology , Orbit/immunology , Orbital Neoplasms/immunology , Adult , Cell Differentiation , Cohort Studies , Cytokines/metabolism , Dendritic Cells/pathology , Female , HLA-DR Antigens/metabolism , Humans , Inflammation/pathology , Lymphoma, Non-Hodgkin/pathology , Male , Middle Aged , Orbit/pathology , Orbital Neoplasms/pathology , Th2 Cells/immunology
2.
Elife ; 122023 04 12.
Article in English | MEDLINE | ID: mdl-37042831

ABSTRACT

Background: Type I interferons (IFNs) promote the expansion of subsets of CD1c+ conventional dendritic cells (CD1c+ DCs), but the molecular basis of CD1c+ DCs involvement in conditions not associated without elevated type I IFNs remains unclear. Methods: We analyzed CD1c+ DCs from two cohorts of non-infectious uveitis patients and healthy donors using RNA-sequencing followed by high-dimensional flow cytometry to characterize the CD1c+ DC populations. Results: We report that the CD1c+ DCs pool from patients with non-infectious uveitis is skewed toward a gene module with the chemokine receptor CX3CR1 as the key hub gene. We confirmed these results in an independent case-control cohort and show that the disease-associated gene module is not mediated by type I IFNs. An analysis of peripheral blood using flow cytometry revealed that CX3CR1+ DC3s were diminished, whereas CX3CR1- DC3s were not. Stimulated CX3CR1+ DC3s secrete high levels of inflammatory cytokines, including TNF-alpha, and CX3CR1+ DC3 like cells can be detected in inflamed eyes of patients. Conclusions: These results show that CX3CR1+ DC3s are implicated in non-infectious uveitis and can secrete proinflammatory mediators implicated in its pathophysiology. Funding: The presented work is supported by UitZicht (project number #2014-4, #2019-10, and #2021-4). The funders had no role in the design, execution, interpretation, or writing of the study.


Subject(s)
Transcriptome , Uveitis , Humans , Antigens, CD1/analysis , Cytokines , Dendritic Cells/physiology , Uveitis/genetics , Flow Cytometry , CX3C Chemokine Receptor 1/genetics
3.
Clin Transl Med ; 12(12): e976, 2022 12.
Article in English | MEDLINE | ID: mdl-36536476

ABSTRACT

OBJECTIVES: The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS: We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS: We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS: We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.


Subject(s)
Multiomics , Psoriasis , Humans , Psoriasis/genetics , Skin/metabolism , Gene Expression Profiling , Transcriptome
4.
Prog Biophys Mol Biol ; 149: 86-98, 2019 12.
Article in English | MEDLINE | ID: mdl-30826123

ABSTRACT

The human Ether-à-go-go Related Gene (hERG) encodes the pore forming subunit of the channel that conducts the rapid delayed rectifier potassium current IKr. IKr drives repolarization in the heart and when IKr is dysfunctional, cardiac repolarization delays, the QT interval on the electrocardiogram (ECG) prolongs and the risk of developing lethal arrhythmias such as Torsade de Pointes (TdP) increases. TdP risk is incorporated in drug safety screening for cardiotoxicity where hERG is the main target since the IKr channels appear highly sensitive to blockage. hERG block is also included as an important read-out in the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative which aims to combine in vitro and in silico experiments on induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to screen for cardiotoxicity. However, the hERG channel has some unique features to consider for drug safety screening, which we will discuss in this study. The hERG channel consists of different isoforms, hERG1a and hERG1b, which individually influence the kinetics of the channel and the drug response in the human heart and in iPSC-CMs. hERG1b is often underappreciated in iPSC-CM studies, drug screening assays and in silico models, and the fact that its contribution might substantially differ between iPSC-CM and healthy but also diseased human heart, adds to this problem. In this study we show that the activation kinetics in iPSC-CMs resemble hERG1b kinetics using Cs+ as a charge carrier. Not including hERG1b in drug safety testing might underestimate the actual role of hERG1b in repolarization and drug response, and might lead to inappropriate conclusions. We stress to focus more on including hERG1b in drug safety testing concerning IKr.


Subject(s)
ERG1 Potassium Channel/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Arrhythmias, Cardiac/metabolism , Cell Line , Computer Simulation , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/genetics , Humans , Kinetics , Potassium/metabolism , Protein Isoforms , Safety , Torsades de Pointes/metabolism
5.
Front Immunol ; 9: 2519, 2018.
Article in English | MEDLINE | ID: mdl-30429855

ABSTRACT

Background: Non-infectious uveitis (NIU) is a severe intra ocular inflammation, which frequently requires prompt systemic immunosuppressive therapy (IMT) to halt the development of vision-threatening complications. IMT is considered when NIU cannot be treated with corticosteroids alone, which is unpredictable in advance. Previous studies have linked blood cell subsets to glucocorticoid sensitivity, which suggests that the composition of blood leukocytes may early identify patients that will require IMT. Objective: To map the blood leukocyte composition of NIU and identify cell subsets that stratify patients that required IMT during follow-up. Methods: We performed controlled flow cytometry experiments measuring a total of 37 protein markers in the blood of 30 IMT free patients with active non-infectious anterior, intermediate, and posterior uveitis, and compared these to 15 age and sex matched healthy controls. Results from manual gating were validated by automatic unsupervised gating using FlowSOM. Results: Patients with uveitis displayed lower relative frequencies of Natural Killer cells and higher relative frequencies of memory T cells, in particular the CCR6+ lineages. These results were confirmed by automatic gating by unsupervised clustering using FlowSOM. We observed considerable heterogeneity in memory T cell subsets and abundance of CXCR3-CCR6+ (Th17) cells between the uveitis subtypes. Importantly, regardless of the uveitis subtype, patients that eventually required IMT in the course of the study follow-up exhibited increased CCR6+ T cell abundance before commencing therapy. Conclusion: High-dimensional immunoprofiling in NIU patients shows that clinically distinct forms of human NIU exhibit shared as well as unique immune cell perturbations in the peripheral blood and link CCR6+ T cell abundance to systemic immunomodulatory treatment.


Subject(s)
Immunosuppressive Agents/immunology , Th17 Cells/immunology , Uveitis/immunology , Adult , Biomarkers/blood , Female , Follow-Up Studies , Humans , Immunologic Memory/immunology , Inflammation/blood , Inflammation/immunology , Killer Cells, Natural/immunology , Leukocytes/immunology , Male , Middle Aged , Receptors, CCR6/immunology , Receptors, CXCR3/immunology , T-Lymphocyte Subsets/immunology , Uveitis/blood
SELECTION OF CITATIONS
SEARCH DETAIL