Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Publication year range
1.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Article in English | MEDLINE | ID: mdl-36586540

ABSTRACT

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Brain Neoplasms/diagnosis , Genotype , DNA Mismatch Repair/genetics , Mismatch Repair Endonuclease PMS2/genetics
2.
Eur J Public Health ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905592

ABSTRACT

BACKGROUND: Somatic and germline genetic alterations are significant drivers of cancer. Increasing integration of new technologies which profile these alterations requires timely, equitable and high-quality genetic counselling to facilitate accurate diagnoses and informed decision-making by patients and their families in preventive and clinical settings. This article aims to provide an overview of genetic counselling legislation and practice across European Union (EU) Member States to serve as a foundation for future European recommendations and action. METHODS: National legislative databases of all 27 Member States were searched using terms relevant to genetic counselling, translated as appropriate. Interviews with relevant experts from each Member State were conducted to validate legislative search results and provide detailed insights into genetic counselling practice in each country. RESULTS: Genetic counselling is included in national legislative documents of 22 of 27 Member States, with substantial variation in legal mechanisms and prescribed details (i.e. the 'who, what, when and where' of counselling). Practice is similarly varied. Workforce capacity (25 of 27 Member States) and genetic literacy (all Member States) were common reported barriers. Recognition and/or better integration of genetic counsellors and updated legislation and were most commonly noted as the 'most important change' which would improve practice. CONCLUSIONS: This review highlights substantial variability in genetic counselling across EU Member States, as well as common barriers notwithstanding this variation. Future recommendations and action should focus on addressing literacy and capacity challenges through legislative, regulatory and/or strategic approaches at EU, national, regional and/or local levels.

3.
Pediatr Blood Cancer ; 70(5): e30229, 2023 05.
Article in English | MEDLINE | ID: mdl-36860090

ABSTRACT

The European Union-funded COST Action (LEukaemia GENe Discovery by data sharing, mining, and collaboration) LEGEND was an international and multidisciplinary collaboration between clinicians and researchers that covered a range of aspects of genetic predisposition in childhood leukemia. Within this framework, we explored the perception and handling of genetic predisposition in the daily practice of European treatment centers. Herein, we present the results of our questionnaire-based survey. We found that the overall awareness is quite high, and respondents remarked that identification and treatment of the most common predisposition syndromes were present. Nevertheless, high demand for continuous education and routinely updated resources remains.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Child , Humans , Neoplasms/genetics , Neoplasms/therapy , Surveys and Questionnaires , Syndrome , Perception
4.
J Med Genet ; 57(4): 269-273, 2020 04.
Article in English | MEDLINE | ID: mdl-31494577

ABSTRACT

INTRODUCTION: Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary cancer syndromes associated with mismatch repair (MMR) deficiency. Tumours show microsatellite instability (MSI), also reported at low levels in non-neoplastic tissues. Our aim was to evaluate the performance of high-sensitivity MSI (hs-MSI) assessment for the identification of LS and CMMRD in non-neoplastic tissues. MATERIALS AND METHODS: Blood DNA samples from 131 individuals were grouped into three cohorts: baseline (22 controls), training (11 CMMRD, 48 LS and 15 controls) and validation (18 CMMRD and 18 controls). Custom next generation sequencing panel and bioinformatics pipeline were used to detect insertions and deletions in microsatellite markers. An hs-MSI score was calculated representing the percentage of unstable markers. RESULTS: The hs-MSI score was significantly higher in CMMRD blood samples when compared with controls in the training cohort (p<0.001). This finding was confirmed in the validation set, reaching 100% specificity and sensitivity. Higher hs-MSI scores were detected in biallelic MSH2 carriers (n=5) compared with MSH6 carriers (n=15). The hs-MSI analysis did not detect a difference between LS and control blood samples (p=0.564). CONCLUSIONS: The hs-MSI approach is a valuable tool for CMMRD diagnosis, especially in suspected patients harbouring MMR variants of unknown significance or non-detected biallelic germline mutations.


Subject(s)
Brain Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/genetics , Adolescent , Adult , Brain Neoplasms/blood , Brain Neoplasms/pathology , Child , Child, Preschool , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/blood , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Female , Germ-Line Mutation/genetics , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Neoplastic Syndromes, Hereditary/blood , Neoplastic Syndromes, Hereditary/pathology , Young Adult
5.
Clin Genet ; 98(4): 374-378, 2020 10.
Article in English | MEDLINE | ID: mdl-32627184

ABSTRACT

We present two independent cases of syndromic thrombocytopenia with multiple malformations, microcephaly, learning difficulties, dysmorphism and other features. Exome sequencing identified two novel de novo heterozygous variants in these patients, c.35G>T p.(Gly12Val) and c.178G>C p.(Gly60Arg), in the RAP1B gene (NM_001010942.2). These variants have not been described previously as germline variants, however functional studies in literature strongly suggest a clinical implication of these two activating hot spot positions. We hypothesize that pathogenic missense variants in the RAP1B gene cause congenital syndromic thrombocytopenia with a spectrum of associated malformations and dysmorphism, possibly through a gain of function mechanism.


Subject(s)
Intellectual Disability/genetics , Microcephaly/genetics , Thrombocytopenia/genetics , rap GTP-Binding Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Exome/genetics , Female , Heterozygote , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Microcephaly/diagnosis , Microcephaly/pathology , Mutation, Missense/genetics , Pedigree , Phenotype , Thrombocytopenia/diagnosis , Thrombocytopenia/pathology , Exome Sequencing
7.
J Med Genet ; 56(2): 53-62, 2019 02.
Article in English | MEDLINE | ID: mdl-30415209

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch-repair genes. Besides very high tumour risks, CMMRD phenotypes are often characterised by the presence of signs reminiscent of neurofibromatosis type 1 (NF1). Because NF1 signs may be present prior to tumour onset, CMMRD is a legitimate differential diagnosis in an otherwise healthy child suspected to have NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation. However, no guidelines indicate when to counsel and test for CMMRD in this setting. Assuming that CMMRD is rare in these patients and that expected benefits of identifying CMMRD prior to tumour onset should outweigh potential harms associated with CMMRD counselling and testing in this setting, we aimed at elaborating a strategy to preselect, among children suspected to have NF1/Legius syndrome without a causative NF1/SPRED1 mutation and no overt malignancy, those children who have a higher probability of having CMMRD. At an interdisciplinary workshop, we discussed estimations of the frequency of CMMRD as a differential diagnosis of NF1 and potential benefits and harms of CMMRD counselling and testing in a healthy child with no malignancy. Preselection criteria and strategies for counselling and testing were developed and reviewed in two rounds of critical revisions. Existing diagnostic CMMRD criteria were adapted to serve as a guideline as to when to consider CMMRD as differential diagnosis of NF1/Legius syndrome. In addition, counselling and testing strategies are suggested to minimise potential harms.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neurofibromatosis 1/diagnosis , Adaptor Proteins, Signal Transducing/genetics , Brain Neoplasms/epidemiology , Colorectal Neoplasms/epidemiology , Diagnosis, Differential , Genetic Counseling , Genetic Testing , Humans , Incidence , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , Mutation , Neoplastic Syndromes, Hereditary/epidemiology , Neurofibromatosis 1/genetics , Parents , Patient Selection , Practice Guidelines as Topic
8.
Hum Mutat ; 40(5): 649-655, 2019 05.
Article in English | MEDLINE | ID: mdl-30740824

ABSTRACT

Constitutional mismatch repair deficiency (CMMRD) is caused by germline pathogenic variants in both alleles of a mismatch repair gene. Patients have an exceptionally high risk of numerous pediatric malignancies and benefit from surveillance and adjusted treatment. The diversity of its manifestation, and ambiguous genotyping results, particularly from PMS2, can complicate diagnosis and preclude timely patient management. Assessment of low-level microsatellite instability in nonneoplastic tissues can detect CMMRD, but current techniques are laborious or of limited sensitivity. Here, we present a simple, scalable CMMRD diagnostic assay. It uses sequencing and molecular barcodes to detect low-frequency microsatellite variants in peripheral blood leukocytes and classifies samples using variant frequencies. We tested 30 samples from 26 genetically-confirmed CMMRD patients, and samples from 94 controls and 40 Lynch syndrome patients. All samples were correctly classified, except one from a CMMRD patient recovering from aplasia. However, additional samples from this same patient tested positive for CMMRD. The assay also confirmed CMMRD in six suspected patients. The assay is suitable for both rapid CMMRD diagnosis within clinical decision windows and scalable screening of at-risk populations. Its deployment will improve patient care, and better define the prevalence and phenotype of this likely underreported cancer syndrome.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Mismatch Repair , Genetic Association Studies , Genetic Predisposition to Disease , Leukocytes/metabolism , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Alleles , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Microsatellite Repeats
9.
Genet Med ; 21(12): 2706-2712, 2019 12.
Article in English | MEDLINE | ID: mdl-31204389

ABSTRACT

PURPOSE: Biallelic pathogenic variants in the mismatch repair (MMR) genes cause a recessive childhood cancer predisposition syndrome known as constitutional mismatch repair deficiency (CMMRD). Family members with a heterozygous MMR variant have Lynch syndrome. We aimed at estimating cancer risk in these heterozygous carriers as a novel approach to avoid complicated statistical methods to correct for ascertainment bias. METHODS: Cumulative colorectal cancer incidence was estimated in a cohort of PMS2- and MSH6-associated families, ascertained by the CMMRD phenotype of the index, by using mutation probabilities based on kinship coefficients as analytical weights in a proportional hazard regression on the cause-specific hazards. Confidence intervals (CIs) were obtained by bootstrapping at the family level. RESULTS: The estimated cumulative colorectal cancer risk at age 70 years for heterozygous PMS2 variant carriers was 8.7% (95% CI 4.3-12.7%) for both sexes combined, and 9.9% (95% CI 4.9-15.3%) for men and 5.9% (95% CI 1.6-11.1%) for women separately. For heterozygous MSH6 variant carriers these estimates are 11.8% (95% CI 4.5-22.7%) for both sexes combined, 10.0% (95% CI 1.83-24.5%) for men and 11.7% (95% CI 2.10-26.5%) for women. CONCLUSION: Our findings are consistent with previous reports that used more complex statistical methods to correct for ascertainment bias. These results underline the need for MMR gene-specific surveillance protocols for Lynch syndrome.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/complications , Colorectal Neoplasms/etiology , Risk Assessment/methods , Adult , Aged , Cohort Studies , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , DNA Mismatch Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Female , Genetic Predisposition to Disease/genetics , Germ-Line Mutation , Humans , Incidence , Male , Middle Aged , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , Mutation , Risk Factors
10.
Blood ; 129(16): 2266-2279, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28202457

ABSTRACT

Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cisSAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34+ hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.


Subject(s)
Cognitive Dysfunction/diagnosis , Immunologic Deficiency Syndromes/diagnosis , Mutation , Myelodysplastic Syndromes/diagnosis , Pancytopenia/diagnosis , Tumor Suppressor Proteins/genetics , Adult , Alleles , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Proliferation , Child , Chromosomes, Human, Pair 7/chemistry , Cognitive Dysfunction/complications , Cognitive Dysfunction/genetics , Cognitive Dysfunction/immunology , Female , Gene Expression , Hematopoiesis/immunology , Heterozygote , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunophenotyping , Interferon Type I/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Male , Middle Aged , Mosaicism , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/pathology , Pancytopenia/complications , Pancytopenia/genetics , Pancytopenia/immunology , Pedigree , Tumor Suppressor Proteins/metabolism
11.
Am J Med Genet A ; 179(7): 1383-1389, 2019 07.
Article in English | MEDLINE | ID: mdl-31062505

ABSTRACT

The PTEN hamartoma tumor syndrome (PHTS) is caused by heterozygous germline variants in PTEN. Here, we report two unrelated patients with juvenile polyposis, macrocephaly, intellectual disability, and hyperpigmented skin macules. Both patients were clinically suspected for the Bannayan-Riley-Ruvalcaba syndrome (BRRS), a PHTS subentity. By array-CGH analysis, we identified an interstitial 10q23.1q23.3 deletion in a buccal mucosa sample of Patient 1 that encompassed PTEN, BMPR1A, and KLLN, among others. In contrast, neither sequencing nor array-CGH analysis identified a pathogenic variant in PTEN or BMPR1A in a blood sample of Patient 2. However, in a surgical specimen of the thyroid gland high-level mosaicism for a 10q23.2q23.3 deletion was observed. Additionally, the pathogenic PTEN variant c.956_959delCTTT p.(Thr319LysfsTer24) was detected in his thyroid tissue. The frame shift variant was neither detected in the patient's blood nor in his buccal mucosa sample. Low-level mosaicism for the microdeletion was identified in a buccal swap sample, and reanalysis of the blood sample suggested marginal-level mosaicism for deletion. The 10q23.2q23.3 deletion mosaicism was also identified in a subsequently resected colonic polyp. Thus, in both cases, the diagnosis of a 10q23 deletion syndrome, which clinically presented as BRRS, was established. Overall, the study expands the BRRS spectrum and highlights the relevance of considering mosaicism in PHTS. We conclude that in all patients with a clear clinical suspicion of PHTS, in which genetic analyses of DNA from blood and buccal swap samples fail to identify causative genetic variants, genetic analyses of additional tissues are recommended.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Chromosome Deletion , Chromosomes, Human, Pair 10 , Hamartoma Syndrome, Multiple/genetics , Mosaicism , Mutation , PTEN Phosphohydrolase/genetics , Adolescent , Female , Humans , Male
12.
Breast Cancer Res ; 20(1): 87, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30086788

ABSTRACT

BACKGROUND: Breast cancer is the most prevalent tumor entity in Li-Fraumeni syndrome. Up to 80% of individuals with a Li-Fraumeni-like phenotype do not harbor detectable causative germline TP53 variants. Yet, no systematic panel analyses for a wide range of cancer predisposition genes have been conducted on cohorts of women with breast cancer fulfilling Li-Fraumeni(-like) clinical diagnostic criteria. METHODS: To specifically help explain the diagnostic gap of TP53 wild-type Li-Fraumeni(-like) breast cancer cases, we performed array-based CGH (comparative genomic hybridization) and panel-based sequencing of 94 cancer predisposition genes on 83 breast cancer patients suggestive of Li-Fraumeni syndrome who had previously had negative test results for causative BRCA1, BRCA2, and TP53 germline variants. RESULTS: We identified 13 pathogenic or likely pathogenic germline variants in ten patients and in nine genes, including four copy number aberrations and nine single-nucleotide variants or small indels. Three patients presented as double-mutation carriers involving two different genes each. In five patients (5 of 83; 6% of cohort), we detected causative pathogenic variants in established hereditary breast cancer susceptibility genes (i.e., PALB2, CHEK2, ATM). Five further patients (5 of 83; 6% of cohort) were found to harbor pathogenic variants in genes lacking a firm association with breast cancer susceptibility to date (i.e., Fanconi pathway genes, RECQ family genes, CDKN2A/p14ARF, and RUNX1). CONCLUSIONS: Our study details the mutational spectrum in breast cancer patients suggestive of Li-Fraumeni syndrome and indicates the need for intensified research on monoallelic variants in Fanconi pathway and RECQ family genes. Notably, this study further reveals a large portion of still unexplained Li-Fraumeni(-like) cases, warranting comprehensive investigation of recently described candidate genes as well as noncoding regions of the TP53 gene in patients with Li-Fraumeni(-like) syndrome lacking TP53 variants in coding regions.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Li-Fraumeni Syndrome/genetics , Adult , Cohort Studies , DNA Copy Number Variations , DNA Mutational Analysis/methods , Female , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics , Young Adult
13.
Am J Med Genet A ; 176(6): 1449-1454, 2018 06.
Article in English | MEDLINE | ID: mdl-29696793

ABSTRACT

KBG syndrome is a rare autosomal dominant disorder caused by constitutive haploinsufficiency of the ankyrin repeat domain-containing protein 11 (ANKRD11) being the result of either loss-of-function gene variants or 16q24.3 microdeletions. The syndrome is characterized by a variable clinical phenotype comprising a distinct facial gestalt and variable neurological involvement. ANKRD11 is frequently affected by loss of heterozygosity in cancer. It influences the ligand-dependent transcriptional activation of nuclear receptors and tumor suppressive function of tumor protein TP53. ANKRD11 thus serves as a candidate tumor suppressor gene and it has been speculated that its haploinsufficiency may lead to an increased cancer risk in KBG syndrome patients. While no systematic data are available, we report here on the second KBG syndrome patient who developed a malignancy. At 17 years of age, the patient was diagnosed with a left-sided paratesticular extrarenal malignant rhabdoid tumor. Genetic investigations identified a somatic truncating gene variant in SMARCB1, which was not present in the germline, and a constitutional de novo 16q24.3 microdeletion leading to a loss of the entire ANKRD11 locus. Thus, KBG syndrome was diagnosed, which was in line with the clinical phenotype of the patient. At present, no specific measures for cancer surveillance can be recommended for KBG syndrome patients. However, a systematic follow-up and inclusion of KBG syndrome patients in registries (e.g., those currently established for cancer prone syndromes) will provide empiric data to support or deny an increased cancer risk in KBG syndrome in the future.


Subject(s)
Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Intellectual Disability/genetics , Rhabdoid Tumor/genetics , Testicular Neoplasms/genetics , Tooth Abnormalities/genetics , Abnormalities, Multiple/etiology , Adolescent , Bone Diseases, Developmental/etiology , Facies , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/etiology , Male , Pedigree , Proto-Oncogene Proteins/genetics , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/surgery , Testicular Neoplasms/drug therapy , Testicular Neoplasms/surgery , Tooth Abnormalities/etiology
14.
Mol Carcinog ; 56(7): 1753-1764, 2017 07.
Article in English | MEDLINE | ID: mdl-28218421

ABSTRACT

Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFßR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , DNA Repair Enzymes/genetics , Frameshift Mutation/genetics , Microsatellite Instability , Adult , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis
15.
Am J Med Genet A ; 173(4): 1017-1037, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168833

ABSTRACT

Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.


Subject(s)
Genetic Predisposition to Disease , Hematologic Neoplasms/diagnosis , Mutation , Neoplasm Proteins/genetics , Neoplasms/diagnosis , Adolescent , Child , Focus Groups/methods , Gene Expression , Genetic Counseling/ethics , Genetic Testing/methods , Genetics, Medical/history , Genetics, Medical/instrumentation , Genetics, Medical/methods , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , History, 21st Century , Humans , Neoplasms/genetics , Neoplasms/pathology , Societies, Medical/history , Syndrome
16.
Biochim Biophys Acta ; 1849(9): 1145-54, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26170143

ABSTRACT

The heteromeric transcription factor GA-binding protein (GABP) consists of two subunits, the alpha subunit (GABPA) carrying the DNA-binding ETS domain, and the beta subunit (GABPB1) harbouring the transcriptional activation domain. GABP is involved in haematopoietic stem cell maintenance and differentiation of myeloid and lymphoid lineages in mice. To elucidate the molecular function of GABP in human haematopoiesis, the present study addressed effects of ectopic overexpression of GABP focussing on the myeloid compartment. Combined overexpression of GABPA and GABPB1 caused a proliferation block in cell lines and drastically reduced the colony-forming capacity of murine lineage-negative cells. Impaired proliferation resulted from perturbed cellular cycling and induction of myeloid differentiation shown by surface markers and myelomonocytic morphology of U937 cells. Depending on the dosage and functional integrity of GABP, ITGAM expression was induced. ITGAM encodes CD11b, the alpha subunit of integrin Mac-1, whose beta subunit, ITGB2/CD18, was already described to be regulated by GABP. Finally, Shield1-dependent proteotuning, luciferase reporter assays and chromatin immunoprecipitation showed that GABP activates the ITGAM/CD11b promoter via three binding sites close to the translational start site. In conclusion, the present study supports the crucial role of GABP in myeloid cell differentiation and identified ITGAM/CD11b as a novel GABP target gene.


Subject(s)
CD11b Antigen/genetics , Cell Differentiation/physiology , GA-Binding Protein Transcription Factor/physiology , Myeloid Cells/cytology , Promoter Regions, Genetic , Animals , Cell Line , GA-Binding Protein Transcription Factor/genetics , Gene Dosage , Humans , Mice
18.
Am J Med Genet A ; 170A(1): 94-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26358559

ABSTRACT

The clinical diagnosis of Lujan-Fryns syndrome (LFS) comprises X-linked intellectual disability (XLID) with marfanoid habitus, distinct combination of minor facial anomalies and nasal speech. However the definition of syndrome was significantly broadened since the original report and implies ID with marfanoid habitus. Mutations of three genes (MED12, UPF3B, and ZDHHC9) have been reported in "broadly defined" LFS. We examined these genes in 28 individuals with a tentative clinical diagnosis of LFS but we did not identify any causative mutation. By molecular karyotyping we detected other disorders, i.e., Phelan-McDermid syndrome and 16p11.2 microduplication, each in one patient. One affected individual was carrier of a different recurrent duplication on 16p11.2 that has been reported several times to the DECIPHER and ISCA databases in individuals with autism, intellectual disability (ID), and developmental delay. It may represent a new duplication syndrome. We also identified previously unreported de novo duplication on chromosome 12p13.31 which we considered to be disease-causing. X-exome sequencing of four individuals revealed private or non-recurrent mutations in NKAP and LAS1L in one patient each. While LFS is defined as a form of XLID, there seem to be various conditions that have rather similar phenotypes. Therefore, the combination of ID and marfanoid habitus in a male patient is not sufficient for the diagnosis of LFS. We suggest that the diagnosis of LFS in patients with ID and marfanoid habitus should be made only in presence of specific facial features, nasal speech and obvious X-linked segregation of the disorder or an unambiguously pathogenic mutation in the MED12.


Subject(s)
Abnormalities, Multiple/diagnosis , Craniofacial Abnormalities/diagnosis , Genes, X-Linked/genetics , Intellectual Disability/diagnosis , Marfan Syndrome/diagnosis , Mental Retardation, X-Linked/diagnosis , Mutation/genetics , Abnormalities, Multiple/genetics , Acyltransferases/genetics , Craniofacial Abnormalities/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/genetics , Male , Marfan Syndrome/genetics , Mediator Complex/genetics , Mental Retardation, X-Linked/genetics , Pedigree , RNA-Binding Proteins/genetics
20.
Pediatr Blood Cancer ; 62(8): 1481-4, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25787918

ABSTRACT

Here we report on a child with Li-Fraumeni syndrome with a de novo TP53 mutation c.818G>A, who developed three malignancies at the age of 4 months, 4 and 5 years, respectively. We show that (i) in the choroid plexus carcinoma, the germline mutation was detected in a homozygous state due to copy-neutral LOH/uniparental disomy, (ii) in the secondary AML, a complex karyotype led to loss of the wild-type TP53 allele, (iii) in the Wilms tumor, the somatic mutation c.814G>A led to compound heterozygosity. The findings show that the complete inactivation of TP53 by different mechanisms is an important step towards tumorigenesis.


Subject(s)
Carcinoma/genetics , Choroid Plexus Neoplasms/genetics , Leukemia, Myeloid, Acute/genetics , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , Wilms Tumor/genetics , Base Sequence , Cell Transformation, Neoplastic/genetics , Child , Female , Gene Silencing , Humans , Li-Fraumeni Syndrome/therapy , Mutation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL