Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Plant Cell ; 35(9): 3280-3302, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37378595

ABSTRACT

Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Protein Processing, Post-Translational , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
2.
Immunity ; 47(1): 1-3, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723543

ABSTRACT

RIPK3 kinase-mediated phosphorylation of MLKL pseudokinase is the execution event of necroptosis. Two independent reports-in Immunity (Yoon et al., 2017) and Cell (Gong et al., 2017)-reveal that MLKL affects homeostatic membrane trafficking and necroptosis-enhanced bubble formation involving interaction with the ESCRT machinery.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Extracellular Vesicles/metabolism , Necrosis , Protein Kinases/metabolism , Protein Transport , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Endosomal Sorting Complexes Required for Transport , Humans , Protein Kinases/immunology
3.
Cell Mol Life Sci ; 79(1): 19, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-34971436

ABSTRACT

Secondary necrosis has long been perceived as an uncontrolled process resulting in total lysis of the apoptotic cell. Recently, it was shown that progression of apoptosis to secondary necrosis is regulated by Gasdermin E (GSDME), which requires activation by caspase-3. Although the contribution of GSDME in this context has been attributed to its pore-forming capacity, little is known about the kinetics and size characteristics of this. Here we report on the membrane permeabilizing features of GSDME by monitoring the influx and efflux of dextrans of different sizes into/from anti-Fas-treated L929sAhFas cells undergoing apoptosis-driven secondary necrosis. We found that GSDME accelerates cell lysis measured by SYTOX Blue staining but does not affect the exposure of phosphatidylserine on the plasma membrane. Furthermore, loss of GSDME expression clearly hampered the influx of fluorescently labeled dextrans while the efflux happened independently of the presence or absence of GSDME expression. Importantly, both in- and efflux of dextrans were dependent on their molecular weight. Altogether, our results demonstrate that GSDME regulates the passage of compounds together with other plasma membrane destabilizing subroutines.


Subject(s)
Apoptosis , Cell Membrane/metabolism , Necrosis/metabolism , Receptors, Estrogen/metabolism , Animals , Cell Line , Cell Membrane Permeability , Cell Nucleus/metabolism , Dextrans/metabolism , Kinetics , Mice , Molecular Weight , Nanoparticles/chemistry
4.
Semin Cell Dev Biol ; 35: 2-13, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25160988

ABSTRACT

Over the last decade, our picture of cell death signals involved in experimental disease models totally shifted. Indeed, in addition to apoptosis, multiple forms of regulated necrosis have been associated with an increasing number of pathologies such as ischemia-reperfusion injury in brain, heart and kidney, inflammatory diseases, sepsis, retinal disorders, neurodegenerative diseases and infectious disorders. Especially necroptosis is currently attracting the attention of the scientific community. However, the in vivo identification of ongoing necroptosis in experimental disease conditions remains troublesome, mainly due to the lack of specific biomarkers. Initially, Receptor-Interacting Protein Kinase 1 (RIPK1) and RIPK3 kinase activity were uniquely associated with induction of necroptosis, however recent evidence suggests pleiotropic functions in cell death, inflammation and survival, obscuring a clear picture. In this review, we will present the last methodological advances for in vivo necroptosis identification and discuss past and recent data to provide an update of the so-called "necroptosis-associated pathologies".


Subject(s)
Models, Biological , Necrosis/metabolism , Pathology, Clinical/methods , Signal Transduction , Animals , Caspase 8/metabolism , Humans , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
7.
Sensors (Basel) ; 14(1): 1140-54, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24434874

ABSTRACT

Among biosensors, genetically-encoded FRET-based biosensors are widely used to localize and measure enzymatic activities. Kinases activities are of particular interest as their spatiotemporal regulation has become crucial for the deep understanding of cell fate decisions. This is especially the case for ERK, whose activity is a key node in signal transduction pathways and can direct the cell into various processes. There is a constant need for better tools to analyze kinases in vivo, and to detect even the slightest variations of their activities. Here we report the optimization of the previous ERK activity reporters, EKAR and EKAREV. Those tools are constituted by two fluorophores adapted for FRET experiments, which are flanking a specific substrate of ERK, and a domain able to recognize and bind this substrate when phosphorylated. The latter phosphorylation allows a conformational change of the biosensor and thus a FRET signal. We improved those biosensors with modifications of: (i) fluorophores and (ii) linkers between substrate and binding domain, resulting in new versions that exhibit broader dynamic ranges upon EGF stimulation when FRET experiments are carried out by fluorescence lifetime and ratiometric measurements. Herein, we characterize those new biosensors and discuss their observed differences that depend on their fluorescence properties.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes , Phosphorylation , Signal Transduction
8.
FEBS J ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872002

ABSTRACT

Homeostasis disruption is visible at the molecular and cellular levels and may often lead to cell death. This vital process allows us to maintain the more extensive system's integrity by keeping the different features (genetic, metabolic, physiologic, and individual) intact. Interestingly, while cells can die in different manners, dying cells still communicate with their environment. This communication was, for a long time, perceived as only driven by the release of soluble factors. However, it has now been reconsidered with the increasing interest in extracellular vesicles (EVs), which are discovered to be released during different regulated cell death programs, with the observation of specific effects. EVs are game changers in the paradigm of cell-cell communication with tremendous implications in fundamental research with regard to noncell autonomous functions, as well as in biomarkers research, all of which are geared toward diagnostic and therapeutic purposes. This review is composed of two main parts. The first is a comprehensive presentation of the state of the art of the EV field at large. In the second part, we focus on EVs discovered to be released during different regulated cell death programs, also known as cell death EVs (cdEVs), and EV-associated specific effects on recipient cells in the context of cell death and inflammation/inflammatory responses.

9.
J Extracell Vesicles ; 12(10): e12365, 2023 10.
Article in English | MEDLINE | ID: mdl-37807017

ABSTRACT

Formation of extracellular vesicles (EVs) has emerged as a novel paradigm in cell-to-cell communication in health and disease. EVs are notably produced during cell death but it had remained unclear whether different modalities of regulated cell death (RCD) influence the biogenesis and composition of EVs. To this end, we performed a comparative analysis of steady-state (ssEVs) and cell death-associated EVs (cdEVs) following TNF-induced necroptosis (necEVs), anti-Fas-induced apoptosis (apoEVs), and ML162-induced ferroptosis (ferEVs) using the same cell line. For each RCD condition, we determined the biophysical and biochemical characteristics of the cell death-associated EVs (cdEVs), the protein cargo, and the presence of methylated ribosomal RNA. We found that the global protein content of all cdEVs was increased compared to steady-state EVs. Qualitatively, the isolated exosomal ssEVs and cdEVs, contained a largely overlapping protein cargo including some quantitative differences in particular proteins. All cdEVs were enriched for proteins involved in RNA splicing and nuclear export, and showed distinctive rRNA methylation patterns compared to ssEVs. Interestingly, necEVs and apoEVs, but strikingly not ferEVs, showed enrichment of proteins involved in ribosome biogenesis. Altogether, our work documents quantitative and qualitative differences between ssEVs and cdEVs.


Subject(s)
Extracellular Vesicles , Ferroptosis , Extracellular Vesicles/metabolism , Necroptosis , Proteins/metabolism , Apoptosis
10.
ACS Sens ; 7(10): 2920-2927, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36162130

ABSTRACT

Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Kinetics
11.
Biomolecules ; 12(7)2022 06 28.
Article in English | MEDLINE | ID: mdl-35883457

ABSTRACT

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Subject(s)
Caenorhabditis elegans , Neoplasms , Animals , Apoptosis , Cell Death , Humans , Necrosis
12.
PLoS Pathog ; 5(5): e1000412, 2009 May.
Article in English | MEDLINE | ID: mdl-19412342

ABSTRACT

Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3' half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3' half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3' portion of the cVDPV genome was replaced by the 3' half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.


Subject(s)
Enterovirus/genetics , Genome, Viral , Poliovirus Vaccines , Poliovirus/genetics , Recombination, Genetic , Animals , Cell Line, Tumor , Cloning, Molecular , Disease Models, Animal , Female , Humans , Madagascar , Male , Mice , Mice, Transgenic , Phylogeny , Poliomyelitis/pathology , Poliomyelitis/virology , Poliovirus/pathogenicity , Poliovirus/physiology , Sequence Alignment , Sequence Analysis, DNA , Temperature , Vaccines, Attenuated , Viral Plaque Assay , Virulence , Virus Replication
13.
Trends Cell Biol ; 31(6): 500-513, 2021 06.
Article in English | MEDLINE | ID: mdl-33771452

ABSTRACT

The gasdermin (GSDM) family has evolved as six gene clusters (GSDMA-E and Pejvakin, PJVK), and GSDM proteins are characterized by a unique N-terminal domain (N-GSDM). With the exception of PJVK, the N-GSDM domain is capable of executing plasma membrane permeabilization. Depending on the cell death modality, several protease- and kinase-dependent mechanisms directly regulate the activity of GSDME and GSDMD, the two most widely expressed and best-studied GSDMs. We provide an overview of all GSDMs in terms of biological function, tissue expression, activation, regulation, and structure. In-depth phylogenetic analysis reveals that GSDM genes show many gene duplications and deletions, suggesting that strong evolutionary forces and a unique position of the PJVK gene are associated with the occurrence of complex inner-ear development in vertebrates.


Subject(s)
Biology , Neoplasm Proteins , Animals , Cell Death , Cell Membrane , Phylogeny
14.
iScience ; 24(9): 103074, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34568795

ABSTRACT

ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.

15.
Nat Cell Biol ; 23(4): 377-390, 2021 04.
Article in English | MEDLINE | ID: mdl-33795873

ABSTRACT

Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , Organoids/metabolism , Organoids/pathology , Single-Cell Analysis
16.
Cell Death Dis ; 11(11): 1003, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230108

ABSTRACT

Radiotherapy is commonly used as a cytotoxic treatment of a wide variety of tumors. Interestingly, few case reports underlined its potential to induce immune-mediated abscopal effects, resulting in regression of metastases, distant from the irradiated site. These observations are rare, and apparently depend on the dose used, suggesting that dose-related cellular responses may be involved in the distant immunogenic responses. Ionizing radiation (IR) has been reported to elicit immunogenic apoptosis, necroptosis, mitotic catastrophe, and senescence. In order to link a cellular outcome with a particular dose of irradiation, we performed a systematic study in a panel of cell lines on the cellular responses at different doses of X-rays. Remarkably, we observed that all cell lines tested responded in a similar fashion to IR with characteristics of mitotic catastrophe, senescence, lipid peroxidation, and caspase activity. Iron chelators (but not Ferrostatin-1 or vitamin E) could prevent the formation of lipid peroxides and cell death induced by IR, suggesting a crucial role of iron-dependent cell death during high-dose irradiation. We also show that in K-Ras-mutated cells, IR can induce morphological features reminiscent of methuosis, a cell death modality that has been recently described following H-Ras or K-Ras mutation overexpression.


Subject(s)
Cell Death/drug effects , Cellular Senescence/drug effects , Radiation, Ionizing , Animals , Humans , Mice
17.
J Virol ; 82(17): 8927-32, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18579607

ABSTRACT

Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.


Subject(s)
Disease Outbreaks , Poliomyelitis/epidemiology , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/isolation & purification , Vaccines, Synthetic/chemistry , Base Sequence , Cell Line, Tumor , DNA, Complementary , Enterovirus C, Human/chemistry , Humans , Kinetics , Molecular Sequence Data , Poliomyelitis/virology , Poliovirus/classification , Poliovirus/genetics , Poliovirus/pathogenicity , Recombination, Genetic , Vaccines, Synthetic/genetics , Virus Replication
18.
PLoS Pathog ; 3(12): e191, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18085822

ABSTRACT

Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP) associated with type 2 vaccine-derived polioviruses (VDPVs) were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV) in the 5'-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C) in the 3'-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3D(pol) coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity.


Subject(s)
Disease Outbreaks , Enterovirus C, Human/isolation & purification , Evolution, Molecular , Genome, Viral , Poliovirus/isolation & purification , Animals , Cells, Cultured , Enterovirus C, Human/classification , Enterovirus C, Human/immunology , Feces/virology , Female , Genomics , Humans , Madagascar/epidemiology , Male , Mice , Molecular Epidemiology , Paralysis/epidemiology , Paralysis/physiopathology , Paralysis/virology , Poliovirus/classification , Poliovirus/immunology , Poliovirus Vaccine, Oral/administration & dosage , RNA, Viral/genetics , Recombination, Genetic , Serotyping
19.
Cytometry A ; 73(8): 745-53, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18496850

ABSTRACT

In combination with two photon excitation, FLIM is currently one of the best techniques to quantitatively study the subcellular localization of protein-protein interactions in living cells. An appropriate analysis procedure is crucial to obtain reliable results. TCSPC is an accurate method to measure FLIM. It is however an indirect process that requires photon decay curve fitting, using an exponential decay equation. Although choosing the number of exponential terms is essential, it is labor-intensive and time consuming. Therefore, a mono-model is usually applied to a whole image. Here we propose an algorithm, named Lichi, allowing pixel by pixel analysis based on the Deltachi(2) value. Lichi was validated using simulated photon decay curves with known lifetimes and proportions. It showed a high robustness for decay curves with more than 10(3) photons. When applied to lifetime images acquired from living cells, it resulted in a more realistic representation of the interaction maps. We developed an easy-to-use procedure for multi-model FLIM analysis, which enables optimized FRET quantification for all interaction texture studies, and is especially suitable to avoid the classical misinterpretation of heterogeneous samples.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Imaging, Three-Dimensional/methods , Algorithms , Cell Survival/drug effects , HeLa Cells , Humans , Models, Biological , Nocodazole/pharmacology , Photons , Recombinant Fusion Proteins/metabolism , Time Factors , rab GTP-Binding Proteins/metabolism
20.
Sci Rep ; 7: 41026, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106114

ABSTRACT

Monitoring of different signalling enzymes in a single assay using multiplex biosensing provides a multidimensional workspace to elucidate biological processes, signalling pathway crosstalk, and determine precise sequence of events at the single living cell level. In this study, we interrogate the complexity in cAMP/PKA-MAPK/ERK1&2 crosstalk by using multi-parameter biosensing experiments to correlate biochemical activities simultaneously in time and space. Using a single excitation wavelength dual colour FLIM method we are able to detect fluorescence lifetime images of two donors to simultaneously measure PKA and ERK1&2 kinase activities in the same cellular localization by using FRET biosensors. To this end, we excite two FRET donors mTFP1 and LSSmOrange with a 440 nm wavelength and we alleviate spectral bleed-through associated limitations with the very dim-fluorescent acceptor ShadowG for mTFP1 and the red-shifted mKate2 for LSSmOrange. The simultaneous recording of PKA and ERK1&2 kinase activities reveals concomitant EGF-mediated activations of both kinases in HeLa cells. Under these conditions the subsequent Forskolin-induced cAMP release reverses the transient increase of EGF-mediated ERK1&2 kinase activity while reinforcing PKA activation. Here we propose a validated methodology for multiparametric kinase biosensing in living cells using FRET-FLIM.


Subject(s)
Biosensing Techniques/methods , Cyclic AMP-Dependent Protein Kinases/analysis , Cytological Techniques/methods , Mitogen-Activated Protein Kinase 1/analysis , Mitogen-Activated Protein Kinase 3/analysis , Optical Imaging/methods , Cyclic AMP/metabolism , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/metabolism , HeLa Cells , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL