ABSTRACT
We identified rat hepatitis E virus (HEV) RNA in farmed pigs from Spain. Our results indicate that pigs might be susceptible to rat HEV and could serve as viral intermediaries between rodents and humans. Europe should evaluate the prevalence of rat HEV in farmed pigs to assess the risk to public health.
Subject(s)
Hepatitis E virus , Humans , Rats , Animals , Swine , Spain/epidemiology , Hepatitis E virus/genetics , Europe , Farms , Public Health , RNAABSTRACT
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in non-specific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the aetiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions.
Subject(s)
Mycobacterium Infections , Mycobacterium bovis , Animals , Cytokines , Disease Models, Animal , Hot Temperature , Immunity, Innate , Polysaccharides , ZebrafishABSTRACT
Trained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.
Subject(s)
Mycobacterium bovis , Salmonella Infections, Animal , Salmonella enterica , Swine Diseases , Animals , Female , Hot Temperature , Salmonella , Salmonella Infections, Animal/microbiology , Swine , Swine Diseases/microbiology , Swine Diseases/prevention & controlABSTRACT
The objective of this study was to design a pangenotypic PCR-based assay for the detection and quantification of hepatitis E virus (HEV) RNA from across the entire spectrum of described genotypes belonging to the Orthohepevirus A genus. The optimal conditions and the performance of the assay were determined by testing the WHO standard strain (6219/10) and the WHO HEV panel (8578/13). Similarly, performance comparisons were made with two commercial assays (Real Star HEV RT-PCR 2.0 and ampliCube HEV 2.0 Quant) to detect HEV RNA at concentrations below 1,000 IU/ml with viral strains from the WHO and to test samples from 54 patients with acute hepatitis. The assay presented in this study was able to detect the entire spectrum of described genotypes belonging to the Orthohepevirus A genus, demonstrating better performance than both commercial kits. This procedure may represent a significant improvement in the molecular diagnosis of HEV infection.
Subject(s)
Hepatitis E virus , Hepatitis E , Hepatitis E/diagnosis , Hepatitis E virus/genetics , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , Sensitivity and SpecificityABSTRACT
Animal tuberculosis (TB) is a multi-host disease caused by members of the Mycobacterium tuberculosis complex (MTC). Due to its impact on economy, sanitary standards of milk and meat industry, public health and conservation, TB control is an actively ongoing research subject. Several wildlife species are involved in the maintenance and transmission of TB, so that new approaches to wildlife TB diagnosis have gained relevance in recent years. Diagnosis is a paramount step for screening, epidemiological investigation, as well as for ensuring the success of control strategies such as vaccination trials. This is the first review that systematically addresses data available for the diagnosis of TB in wildlife following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The article also gives an overview of the factors related to host, environment, sampling, and diagnostic techniques which can affect test performance. After three screenings, 124 articles were considered for systematic review. Literature indicates that post-mortem examination and culture are useful methods for disease surveillance, but immunological diagnostic tests based on cellular and humoral immune response detection are gaining importance in wildlife TB diagnosis. Among them, serological tests are especially useful in wildlife because they are relatively inexpensive and easy to perform, facilitate large-scale surveillance and can be used both ante- and post-mortem. Currently available studies assessed test performance mostly in cervids, European badgers, wild suids and wild bovids. Research to improve diagnostic tests for wildlife TB diagnosis is still needed in order to reach accurate, rapid and cost-effective diagnostic techniques adequate to a broad range of target species and consistent over space and time to allow proper disease monitoring.
Subject(s)
Animals, Wild , Disease Reservoirs/veterinary , Mycobacterium bovis/isolation & purification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/veterinary , Animals , Disease Reservoirs/microbiology , Tuberculosis/diagnosis , Tuberculosis/microbiologyABSTRACT
Effective vaccines against tuberculosis (TB) are needed in order to prevent TB transmission in human and animal populations. Evaluation of TB vaccines may be facilitated by using reliable animal models that mimic host pathophysiology and natural transmission of the disease as closely as possible. In this study, we evaluated the immunogenicity and efficacy of two attenuated vaccines, BCG and MTBVAC, after each was given to 17 goats (2 months old) and then exposed for 9 months to goats infected with M. caprae. In general, MTBVAC-vaccinated goats showed higher interferon-gamma release than BCG vaccinated goats in response to bovine protein purified derivative and ESAT-6/CFP-10 antigens and the response was significantly higher than that observed in the control group until challenge. All animals showed lesions consistent with TB at the end of the study. Goats that received either vaccine showed significantly lower scores for pulmonary lymph nodes and total lesions than unvaccinated controls. Both MTBVAC and BCG vaccines proved to be immunogenic and effective in reducing severity of TB pathology caused by M. caprae. Our model system of natural TB transmission may be useful for evaluating and optimizing vaccines.
Subject(s)
BCG Vaccine/immunology , Goat Diseases/immunology , Immunogenicity, Vaccine/immunology , Mycoplasma/physiology , Tuberculosis Vaccines/immunology , Tuberculosis/veterinary , Animals , Goat Diseases/transmission , Goats , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Tuberculosis/immunology , Tuberculosis/transmission , Vaccines, Attenuated/immunologyABSTRACT
BACKGROUND: It has been shown that wildlife can serve as natural reservoirs of hepatitis E virus (HEV). The wild boar (Sus scrofa) is probably the main natural reservoir of HEV and could therefore represent an important route of transmission in Europe, especially in regions where game meat is widely consumed. We evaluated the prevalence of HEV infection in wild boar in the south of Spain, with the aim of identifying associated risk factors. A cross-sectional study that included hunted wild boar was carried out during the 2015/2016 hunting season (October 15 to February 15) in Andalusia (southern Spain). The outcome variable was HEV infection, defined as amplification of HEV RNA in serum by RT-PCR. RESULTS: A total of 142 animals, selected from 12 hunting areas, were included and formed the study population. Thirty-three wild boars (23.2%; 95% CI: 16.8%-30.7%) were positive for HEV infection. Prevalence peaked in October and November, then gradually declined until the end of December. After multivariate analysis, only hunting date was independently associated with HEV infection across sex and age. CONCLUSIONS: Our study found a relatively high prevalence of HEV infection in wild boar in the south of Spain, suggesting that prevalence may depend on the season when the animal is hunted. In consequence, the potential risk of zoonotic transmission could fluctuate.
Subject(s)
Hepatitis E virus , Hepatitis E/veterinary , Swine Diseases/epidemiology , Animals , Animals, Wild/virology , Female , Hepatitis E/epidemiology , Hepatitis E/virology , Male , Prevalence , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Seasons , Spain/epidemiology , Swine , Swine Diseases/virologyABSTRACT
Based on previous evidence demonstrating the efficacy of inactivated mycobacteria for the control of fish mycobacteriosis, we explored the protective efficacy of two inactivated Mycobacterium bovis administered via parenteral and mucosal routes against Mycobacterium marinum infection mimicking natural conditions in the zebrafish model of tuberculosis. Although we did not observe a clear effect of any of the immunostimulants on mycobacterial burden, the results showed a significant increase in TLR2 and TLR4 gene expression levels in fishes parenterally immunized with inactivated Bacillus Calmette-Guérin (BCG). Our findings demonstrated that the TLR2 and the TLR4 signaling pathways are involved in the immune response elicited by inactivated mycobacteria in the zebrafish model of tuberculosis and support the use of inactivated mycobacteria in vaccine formulations for the control of mycobacteriosis.
Subject(s)
Mycobacterium bovis , Tuberculosis , Animals , Toll-Like Receptor 2 , Zebrafish , Toll-Like Receptor 4 , Hot Temperature , BCG VaccineABSTRACT
Tuberculosis (TB) is a zoonotic infectious disease caused by bacteria belonging to the Mycobacterium tuberculosis complex (MTC), which can affect a wide variety of domestic and wild animal species. Although the role of goats as a reservoir of MTC bacteria has been evidenced, information about the circulation of MTC strains in this species is still very scarce. The aim of the present study was to determine the seroprevalence, spatial distribution, risk factors and MTC spoligotypes circulating in goats from Andalusia (Southern Spain), the Spanish region with the largest goat census and a hotspot area of TB in both cattle and wild ungulates. A total of 2155 serum samples from 80 goat flocks were analyzed by an in-house ELISA using the P22 protein complex as a coating antigen. Antibodies against MTC were detected in 473 goats (21.9%, 95% CI: 20.2-23.7) and the true seroprevalence was 22.3% (95% CI: 20.6-24.1). Seropositivity was found in 72 (90.0%) of the 80 flocks analyzed. The generalized estimating equation model showed that the management system (higher seroprevalence on intensive and semi-intensive farms), and the presence of hospital pens inside the regular stables, were risk factors potentially associated with MTC exposure in goats in Southern Spain. The spatial analysis identified a significant spatial cluster (p < 0.001) in Eastern Andalusia. A total of 16 different MTC spoligotypes, including five of M. caprae and eleven of M. bovis, were identified in goats between 2015 and 2022 in the study area, with SB0157 as the most frequently isolated. The results obtained indicate widespread and non-homogeneous spatial distribution of MTC in goat herds from Southern Spain. The high individual and herd-level seroprevalence values found suggest that goats could play a significant role in the maintenance and transmission of MTC in the study area. Our results highlight the importance of implementing control measures in this species.
Subject(s)
Goat Diseases , Goats , Mycobacterium tuberculosis , Tuberculosis , Animals , Spain/epidemiology , Goat Diseases/epidemiology , Goat Diseases/microbiology , Seroepidemiologic Studies , Tuberculosis/veterinary , Tuberculosis/epidemiology , Tuberculosis/microbiology , Mycobacterium tuberculosis/isolation & purification , Risk Factors , Female , Enzyme-Linked Immunosorbent Assay/veterinary , Male , PrevalenceABSTRACT
THE PROBLEM: Early and rapid diagnosis of bovine tuberculosis remains an issue of great interest. AIM: The aim of this study was to evaluate the use of synthetic lipid antigens for diagnosis of tuberculosis in red deer (Cervus elaphus). The proposition: Synthetic mycolic acid derivatives, identical to components of mycobacterial cells, bind to antibodies to lipids produced in active human tuberculosis. Experimental infection studies in red deer (Cervus elaphus) allow the evaluation of such antigens for the serodiagnosis of bovine tuberculosis. RESULTS: Antibody levels in plasma from deer experimentally infected with Mycobacterium bovis were evaluated in ELISA using synthetic antigens based on several classes of mycolic acid, using protein G as conjugate. All antigens gave significantly increased responses 60 days post-infection, when all animals had active disease. A significantly increased response was also observed with four antigens 15 days after infection. CONCLUSION: ELISA using synthetic lipid antigens not only detects antibodies in the plasma of deer experimentally infected with M. bovis, but a strong response occurs early in the infection. With a full analysis of responses with naturally infected animals, this may offer a useful supplement to current diagnostic methods.
ABSTRACT
Epizootic hemorrhagic disease (EHD) virus serotype 8 (EHDV-8) emerged in Spain in autumn 2022. In this study, we aimed to (1) characterize the clinical and lesional presentation of EHDV infection in European red deer (Cervus elaphus), and (2) study the spatial spread of the virus in wild ruminants in Spain after its introduction, in 2022/2023. We confirmed EHDV infection in two clinically compatible sick red deer by PCR and detection of anti-EHDV specific antibodies. EHDV infection occurred in red deer with hyperacute to acute clinical signs and lesions associated to vascular changes leading to death of the animals. Partial sequences of variable segment 2 (VP2) and segment 5 (NS1) genes of the detected viruses had >99% nucleotide identity with EHDV-8 sequences from Tunisia and Italy. In a cross-sectional serological study of EHDV in 592 wild ruminants, mainly red deer (n=578), in southwestern Spain, we detected anti-EHDV antibodies in 37 of 592 samples (6.3%; 95% confidence interval: 4.3-8.2), all from red deer and from the localities where clinical cases of EHD were confirmed in red deer. We conclude that EHDV-8 infection causes severe EHD in European red deer. The serosurvey revealed a limited spread of EHDV-8 in Spanish wild ruminant populations in the first year of virus detection in Spain.
Subject(s)
Ceratopogonidae , Deer , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Cross-Sectional Studies , Spain/epidemiology , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Ruminants , Hemorrhagic Disease Virus, Epizootic/geneticsABSTRACT
Paslahepevirus balayani (formerly known as hepatitis E virus) is an emerging cause of foodborne disease in Europe, transmitted mainly by the consumption of raw or undercooked pork. Since little is known about the presence of the virus in several pork products that are eaten uncooked, our aim was to evaluate the prevalence of Paslahepevirus balayani in groups of commercial pork products intended for human consumption subjected to different processing techniques. A total of 1265 samples of pork products from Spain were divided into four groups and tested for the presence of Paslahepevirus balayani RNA: unprocessed pig and wild boar meat frozen at -20 °C (n = 389), dry-cured pork products (n = 391), dry-cured and salted pork products (n = 219), and boiled products (n = 266) (none of these products contained pork liver). Five samples were positive for Paslahepevirus balayani RNA (overall prevalence: 0.4%; 95% CI: 0.17% - 0.92%). All positive samples were from unprocessed meat stored at -20 °C, with a prevalence in this group of 1.3% (95% CI: 0.42-3.44); two samples came from pigs (1.1%; 95% CI: 0.13-3.81) and three from wild boar (1.5%; 95% CI: 0.31-4.28). None of the pork samples in the other groups was positive. In conclusion, Paslahepevirus balayani was found in unprocessed swine products form Spain, but not in processed products intended to be consumed undercooked, demonstrating that transmission of this zoonotic virus by eating these pork products should be more seriously considered.
ABSTRACT
Hepatitis E virus (HEV) is an emerging zoonotic virus of public health concern, of which pigs, wild boar and red deer are the main reservoirs. The European Food Safety Authority (EFSA) has recently prioritized the development of monitoring programs of HEV at different stages of the pig food chain, including outdoor pig farming. Pigs managed under these extensive production systems frequently share habitat and natural resources with wild boar and red deer during fattening stages and cross-species transmission of HEV among these species has previously been suggested. In this context, we aimed to (I) to evaluate the risk of HEV circulation within the production phases of extensively raised pigs and at the domestic-wildlife interface, and (II) to identify the genotypes circulating within these hosts. A total of 1452 pigs from seven different pig farms were longitudinally sampled during the breeding, rearing, and fattening production phases. In addition, 138 and 252 sympatric wild boar and red deer, respectively, were analysed. Anti-HEV antibodies were found in 1245 (85.7â¯%) out of the 1452 Iberian pigs sampled. The seroprevalence was 30.4â¯% in the breeding phase, 95.4â¯% in the rearing phase and 97.0â¯% in the fattening phase. Statistically significant differences (P < 0.05) were found among the three production phases. The seroprevalence was significantly higher (P < 0.001) in fattening pigs compared to those found in sympatric wild boar (31.9â¯%) and red deer (2.0â¯%). Three (1.0â¯%) out of the 293 serum pools analysed were positive for viral RNA. One of them was identified in pigs at the rearing phase (genotype 3â¯f) and two in wild boar (genotypes 3â¯f and 3â¯m). The high seroprevalence detected in extensively raised pigs, together with the detection of the zoonotic HEV-3â¯f and HEV-3â¯m subtypes in sympatric domestic and wild swine, highlights the risk of zoonotic transmission and the need to establish surveillance programs and control measures, particularly in breeding and rearing phase, in these epidemiological scenarios.
ABSTRACT
Samples from the mesenteric lymph nodes (MS LNs) and ileocecal valves (ICV) of 105 goats, comprising 61 non-vaccinated and 44 vaccinated against Mycobacterium avium subspecies paratuberculosis (MAP), were collected at slaughter from a farm with a confirmed history of paratuberculosis (PTB). These goats had subclinical infections. PTB-compatible lesions in the MS LNs, ICV lamina propria (LP), and Peyer's patches (PPs) were graded separately. Furthermore, the load of acid-fast bacilli was quantified using Ziehl-Neelsen staining (ZN), MAP antigens by immunohistochemistry (IHC), and MAP DNA by PCR targeting the IS900 sequence. Gross PTB-compatible lesions were found in 39% of the goats, with 31.72% vaccinated (V) and 68.29% non-vaccinated (nV). Histopathological lesions induced MAP were observed in 58% of the animals, with 36.07% vaccinated and 63.93% non-vaccinated. The inclusion of histopathology as a diagnostic tool led to a 28% increase in diagnosed cases in MS LNs and 86.05% in ICV. Grade IV granulomas with central mineralization and necrosis were the most common lesions in MS LNs. In the ICV, mild granulomatous enteritis with multifocal foci of epithelioid macrophages was predominant, occurring more frequently in the PPs than in the LP. Furthermore, statistical differences in the presence of histopathological lesions between vaccinated and non-vaccinated goats were noted in MS LNs, ICV LPs, and ICV PPs. Non-vaccinated animals showed higher positivity rates in ZN, IHC, and PCR tests, underscoring the benefits of anti-MAP vaccination in reducing PTB lesions and bacterial load in target organs. Our findings emphasize the necessity of integrating gross and histopathological assessments with various laboratory techniques for accurate morphological and etiological diagnosis of PTB in both vaccinated and non-vaccinated goats with subclinical disease. However, further studies are required to refine sampling protocols for subclinical PTB in goats to enhance the consistency of diagnostic tools.
ABSTRACT
Cases of Leishmania infantum infection have recently been reported in non-human primates (NHPs) in Spain causing severe clinical disease in critically endangered orangutans (Pongo pygmaeus pygmaeus). The aim of this study was to determine exposure and risk factors associated with L. infantum infection in NHPs housed in zoos and wildlife rescue centers (WRC) in Spain. Between 2007 and 2023, sera from 252 NHPs belonging to 47 different species were collected at 15 centers. Indirect immunofluorescence was used to detect the presence of antibodies against L. infantum (cut-off ≥1:80). In addition, hair samples from 78 individuals were tested for Leishmania kDNA by real-time quantitative PCR (qPCR). Anti-Leishmania antibodies were detected in 4.0 % (10/252; 95 %CI: 1.6-6.4) of the NHPs tested at 26.7 % (4/15) of the centers sampled. Twenty-two NHPs were longitudinally sampled between 2010 and 2023: one ring-tailed lemur (Lemur catta) seroconverted and a seropositive orangutan increased antibody titers during the study period. Leishmania infantum kDNA was found in 62.8 % (49/78; 95 %CI: 52.1-73.6) of animals and at all centers sampled (100 %; 7/7). Phylogenetic analysis revealed high homology between the sequence obtained and strains previously isolated in humans, dogs and captive and free-living wildlife species in Spain. To the authors´ knowledge, this is the first report of Leishmania kDNA detection in NHP hair samples. The results indicate that hair samples could be a useful, non-invasive method of detection of L. infantum infection in these species. This is also the first large-scale survey of L. infantum conducted in NHP species in Europe. We report for the first time the presence of Leishmania kDNA in nine different NHP species belonging to the families Cercopithecidae, Lemuridae, and Hylobatidae, expanding the host range for this parasite. The main risk factors associated with L. infantum infection were: age (≥5 years old) and body size (large). Our results demonstrate widespread circulation of this parasite among NHPs housed in Spain, which could be of conservation and public health concern. Monitoring and control programs should be implemented in zoos and WRCs to minimize the risk of NHP exposure to L. infantum in endemic areas worldwide.
ABSTRACT
Resistance to respiratory disease in cattle requires host defense mechanisms that protect against pathogens which have evolved sophisticated strategies to evade them, including an altered function of pulmonary macrophages (MΦs) or the induction of inflammatory responses that cause lung injury and sepsis. The aim of this study was to clarify the mechanisms responsible for vascular changes occurring in the lungs of calves infected with bovine viral diarrhea virus (BVDV) and challenged later with bovine herpesvirus type 1 (BHV-1), evaluating the role of MΦs in the development of pathological lesions in this organ. For this purpose, pulmonary lesions were compared between co-infected calves and healthy animals inoculated only with BHV-1 through immunohistochemical (MAC387, TNFα, IL-1α, iNOS, COX-2 and Factor-VIII) and ultrastructural studies. Both groups of calves presented important vascular alterations produced by fibrin microthrombi and platelet aggregations within the blood vessels. These findings were earlier and more severe in the co-infected group, indicating that the concomitance of BVDV and BHV-1 in the lungs disrupts the pulmonary homeostasis by facilitating the establishment of an inflammatory and procoagulant environment modulated by inflammatory mediators released by pulmonary MΦs. In this regard, the co-infected calves, in spite of presenting a greater number of IMΦs than single-infected group, show a significant decrease in iNOS expression coinciding with the presence of more coagulation lesions. Moreover, animals pre-inoculated with BVDV displayed an alteration in the response of pro-inflammatory cytokines (TNFα and IL-1), which play a key role in activating the immune response, as well as in the local cell-mediated response.
Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/pathology , Coinfection/veterinary , Diarrhea Viruses, Bovine Viral/immunology , Disseminated Intravascular Coagulation/veterinary , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine/immunology , Lung/pathology , Macrophages, Alveolar/metabolism , Animals , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Coinfection/pathology , Coinfection/virology , Disseminated Intravascular Coagulation/pathology , Disseminated Intravascular Coagulation/virology , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Lung/virology , Macrophages, Alveolar/cytology , Microscopy, Electron, Transmission/veterinary , Polymerase Chain Reaction/veterinaryABSTRACT
Multiple infections or co-exposure to pathogens should be considered systematically in wildlife to better understand the ecology and evolution of host-pathogen relationships, so as to better determine the potential use of multiple pathogens as indicators to guide health management. We describe the pattern of co-exposure to several pathogens (i.e. simultaneous positive diagnosis to pathogens in an individual considering Mycobacterium tuberculosis complex lesions, and the presence of antibodies against Toxoplasma gondii, bluetongue virus, and hepatitis E virus) and assessed their main drivers in the wild ungulate community from Doñana National Park (red deer, fallow deer, and wild boar) for a 13-years longitudinal study. The lower-than-expected frequency of co-exposure registered in all species was consistent with non-mutually exclusive hypotheses (e.g. antagonism or disease-related mortality), which requires further investigation. The habitat generalist species (red deer and wild boar) were exposed to a greater diversity of pathogens (frequency of co-exposure around 50%) and/or risk factors than fallow deer (25.0% ± CI95% 4.9). Positive relationships between pathogens were evidenced, which may be explained by common risk factors favouring exposure. The specific combination of pathogens in individuals was mainly driven by different groups of factors (individual, environmental, stochastic, and populational), as well as its interaction, defining a complex eco-epidemiological landscape. To deepen into the main determinants and consequences of co-infections in a complex assemblage of wild hosts, and at the interface with humans and livestock, there also is needed to expand the range of pathogens and compare diverse assemblages of hosts under different environmental and management circumstances.
Subject(s)
Deer , Animals , Animals, Wild/microbiology , Longitudinal Studies , Parks, Recreational , Spain/epidemiology , Sus scrofa , SwineABSTRACT
Aiming to explore whether oral immunization with heat-inactivated Mycobacterium bovis (HIMB) protects mice against Leishmania infection, 18 female BALB/c mice were randomly assigned to the immunized group, that received oral HIMB, or the control group, and were infected by inoculation of 10,000 Leishmania amazonensis promastigotes in the footpad. Spleen culture was positive in 55.55% of immunized mice and in 100% of control mice (p = 0.082). The number of immunolabeled amastigotes number in the popliteal lymph node was lower in the immunized group (p = 0.009). The immunized group presented fewer mature granulomas in the liver (p = 0.005) and more Lys + macrophages (p = 0.002) and fewer CD3+ T lymphocytes (p < 0.001) per hepatic granuloma. We conclude that immunization with HIMB via the oral route limited local parasite dissemination and hepatic granuloma development in mice challenged with Leishmania amazonensis through stimulation of macrophages, which is compatible with trained immunity.
Subject(s)
Hepatitis , Leishmania mexicana , Mycobacterium bovis , Parasites , Female , Animals , Mice , Hot Temperature , Immunization/veterinary , Granuloma/veterinary , Mice, Inbred BALB CABSTRACT
Tuberculosis (TB) is a multi-host infectious disease caused by members of the Mycobacterium tuberculosis complex (MTC). In Mediterranean ecosystems, where multiple animal hosts of TB are present, identifying the role of the different species involved in the epidemiology of TB is a key point to be able to implement proper control measures. Sheep are susceptible to MTC infection but have traditionally been considered a spillover host. However, the occurrence of outbreaks involving sheep in recent years evidences the need to better understand the role of this small ruminant species in the epidemiology of the disease. Here, we aimed to determine the seroprevalence and risk factors associated with MTC seropositivity in sheep in Andalusia (southern Spain), a region with one of the highest prevalence of MTC infection in both cattle and wild ungulates. A total of 2266 sheep from 83 flocks were tested for antibodies against MTC using an in-house indirect ELISA. Anti-MTC antibodies were detected in 16 (0.7%) of the 2266 sheep (adjusted true prevalence 0.29%, 95% posterior probability interval 0.01-1.05). Seropositivity was found in 14.5% (12/83; 95%CI: 6.9-22.0) of the sheep farms analyzed. A semi-extensive management system was identified as a risk factor associated with MTC seropositivity in sheep farms (OR = 3.7; p < 0.038; 95%CI: 1.1-12.4) in the study area. To the best of the authors' knowledge, this is the first active TB surveillance study carried out to assess MTC exposure in sheep. Our results indicate MTC circulation in sheep farms in southern Spain. However, the low individual seroprevalence obtained suggests that sheep may play a limited role in the epidemiology of TB in this region. Serosurveillance programs could be a valuable tool to detect MTC circulation in sheep in risk scenarios or target farms, in order to optimize control measures on TB animal in multi-host Mediterranean ecosystems.
Subject(s)
Cattle Diseases , Mycobacterium , Sheep Diseases , Tuberculosis , Animals , Cattle , Sheep , Seroepidemiologic Studies , Spain/epidemiology , Ecosystem , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/diagnosis , Ruminants , Sheep Diseases/epidemiology , Cattle Diseases/epidemiologyABSTRACT
Bovine alphaherpesvirus type 1 (BoAHV-1) is associated with respiratory and reproductive syndromes. Until present the immunologic mechanisms involved in BoAHV-1 abortion are partially known. We studied key elements of the innate immune response in the placentas and fetal lungs from cattle experimentally-inoculated with BoAHV-1. These tissues were analyzed by histopathology. Furthermore, virus identification was performed by qPCR and the expression of the inflammatory cytokines such as tumor necrosis factor-alpha, interleukin 1-alpha and inflammatory mediators like inducible nitric oxide synthase and cyclooxeganse-2 was evaluated by immunohistochemistry. The viral transplacental infection was confirmed by the detection of BoAHV-1 by qPCR in the placenta and fetal organs, which revealed mild inflammatory lesions. Inducible nitric oxide synthase immunolabelling was high in the lungs of infected fetuses and placentas, as well as for tumor necrosis factor-alpha in the pulmonary parenchyma and cyclooxeganse-2 in fetal annexes. However, the expression of interleukin 1-alpha was weak in these organs. To our knowledge, this is the first study that provides strong evidence of an early immune response to BoAHV-1 infection in the conceptus. Advances in the knowledge of the complex immunological interactions at the feto-maternal unit during BoAHV-1 infection are needed to clarify the pathogenesis of abortion.