Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Bioessays ; 45(8): e2300029, 2023 08.
Article in English | MEDLINE | ID: mdl-37183938

ABSTRACT

The endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells undergoing ER stress and UPR activation can release extracellular signals that can propagate UPR activation to target tissues in a cell non-autonomous signalling mechanism. Separately, studies have determined that the UPR plays a key regulatory role in the biosynthesis of bioactive signalling lipids including sphingolipids and ceramides. Here we weigh the evidence to combine these concepts and propose that during ER stress, UPR activation drives the biosynthesis of ceramide lipids, which are exported and function as cell non-autonomous signals to propagate UPR activation in target cells and tissues.


Subject(s)
Lipid Metabolism , Unfolded Protein Response , Endoplasmic Reticulum Stress , Communication , Lipids
2.
Diabetologia ; 67(7): 1413-1428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662134

ABSTRACT

AIMS/HYPOTHESIS: Our aim was to characterise the in-depth metabolic response to aerobic exercise and the impact of residual pancreatic beta cell function in type 1 diabetes. We also aimed to use the metabolome to distinguish individuals with type 1 diabetes with reduced maximal aerobic capacity in exercise defined by V ˙ O 2peak . METHODS: Thirty participants with type 1 diabetes (≥3 years duration) and 30 control participants were recruited. Groups did not differ in age or sex. After quantification of peak stimulated C-peptide, participants were categorised into those with undetectable (<3 pmol/l), low (3-200 pmol/l) or high (>200 pmol/l) residual beta cell function. Maximal aerobic capacity was assessed by V ˙ O 2peak test and did not differ between control and type 1 diabetes groups. All participants completed 45 min of incline treadmill walking (60% V ˙ O 2peak ) with venous blood taken prior to exercise, immediately post exercise and after 60 min recovery. Serum was analysed using targeted metabolomics. Metabolomic data were analysed by multivariate statistics to define the metabolic phenotype of exercise in type 1 diabetes. Receiver operating characteristic (ROC) curves were used to identify circulating metabolomic markers of maximal aerobic capacity ( V ˙ O 2peak ) during exercise in health and type 1 diabetes. RESULTS: Maximal aerobic capacity ( V ˙ O 2peak ) inversely correlated with HbA1c in the type 1 diabetes group (r2=0.17, p=0.024). Higher resting serum tricarboxylic acid cycle metabolites malic acid (fold change 1.4, p=0.001) and lactate (fold change 1.22, p=1.23×10-5) differentiated people with type 1 diabetes. Higher serum acylcarnitines (AC) (AC C14:1, F value=12.25, p=0.001345; AC C12, F value=11.055, p=0.0018) were unique to the metabolic response to exercise in people with type 1 diabetes. C-peptide status differentially affected metabolic responses in serum ACs during exercise (AC C18:1, leverage 0.066; squared prediction error 3.07). The malic acid/pyruvate ratio in rested serum was diagnostic for maximal aerobic capacity ( V ˙ O 2peak ) in people with type 1 diabetes (ROC curve AUC 0.867 [95% CI 0.716, 0.956]). CONCLUSIONS/INTERPRETATION: The serum metabolome distinguishes high and low maximal aerobic capacity and has diagnostic potential for facilitating personalised medicine approaches to manage aerobic exercise and fitness in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Exercise , Metabolome , Humans , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/physiopathology , Male , Female , Adult , Metabolome/physiology , Exercise/physiology , Oxygen Consumption/physiology , Exercise Test , Metabolomics/methods , Young Adult , C-Peptide/blood , Middle Aged , Insulin-Secreting Cells/metabolism
3.
EMBO Rep ; 22(5): e50767, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33934497

ABSTRACT

Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) are critical for coupling nutritional status and cellular growth; IGF-1R is expressed in multiple cell types including EC. The role of ECIGF-1R in the response to nutritional obesity is unexplored. To examine this, we use gene-modified mice with EC-specific overexpression of human IGF-1R (hIGFREO) and their wild-type littermates. After high-fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad-spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF-1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet-induced obesity, as a result of an altered gut microbiota.


Subject(s)
Insulin Resistance , Microbiota , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/genetics , Receptor, IGF Type 1/genetics
4.
Am J Physiol Cell Physiol ; 323(6): C1601-C1610, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36252128

ABSTRACT

Hind limb ischemia (HLI) is the most severe form of peripheral arterial disease, associated with a substantial reduction of limb blood flow that impairs skeletal muscle homeostasis to promote functional disability. The molecular regulators of HLI-induced muscle perturbations remain poorly defined. This study investigated whether changes in the molecular catabolic-autophagy signaling network were linked to temporal remodeling of skeletal muscle in HLI. HLI was induced in mice via hindlimb ischemia (femoral artery ligation) and confirmed by Doppler echocardiography. Experiments were terminated at time points defined as early- (7 days; n = 5) or late- (28 days; n = 5) stage HLI. Ischemic and nonischemic (contralateral) limb muscles were compared. Ischemic versus nonischemic muscles demonstrated overt remodeling at early-HLI but normalized at late-HLI. Early-onset fiber atrophy was associated with excessive autophagy signaling in ischemic muscle; protein expression increased for Beclin-1, LC3, and p62 (P < 0.05) but proteasome-dependent markers were reduced (P < 0.05). Mitophagy signaling increased in early-stage HLI that aligned with an early and sustained loss of mitochondrial content (P < 0.05). Upstream autophagy regulators, Sestrins, showed divergent responses during early-stage HLI (Sestrin2 increased while Sestrin1 decreased; P < 0.05) in parallel to increased AMP-activated protein kinase (AMPK) phosphorylation (P < 0.05) and lower antioxidant enzyme expression. No changes were found in markers for mechanistic target of rapamycin complex 1 signaling. These data indicate that early activation of the sestrin-AMPK signaling axis may regulate autophagy to stimulate rapid and overt muscle atrophy in HLI, which is normalized within weeks and accompanied by recovery of muscle mass. A complex interplay between Sestrins to regulate autophagy signaling during early-to-late muscle remodeling in HLI is likely.


Subject(s)
Hindlimb , Ischemia , Muscle, Skeletal , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Autophagy , Disease Models, Animal , Femoral Artery/metabolism , Hindlimb/blood supply , Hindlimb/metabolism , Ischemia/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Sestrins
5.
Int J Obes (Lond) ; 45(8): 1773-1781, 2021 08.
Article in English | MEDLINE | ID: mdl-34002038

ABSTRACT

OBJECTIVE: The prevalence of obesity is growing globally. Adiposity increases the risk for metabolic syndrome, type 2 diabetes and cardiovascular disease. Adipose tissue distribution influences systemic metabolism and impacts metabolic disease risk. The link between sexual dimorphisms of adiposity and metabolism is poorly defined. We hypothesise that depot-specific adipose tissue mitochondrial function contributes to the sexual dimorphism of metabolic flexibility in obesity. METHODS: Male and female mice fed high fat diet (HFD) or standard diet (STD) from 8-18 weeks of age underwent whole animal calorimetry and high-resolution mitochondrial respirometry analysis on adipose tissue depots. To determine translatability we used RT-qPCR to examine key brown adipocyte-associated gene expression: peroxisome proliferator-activated receptor co-activator 1α, Uncoupling protein 1 and cell death inducing DFFA like effector a in brown adipose tissue (BAT) and subcutaneous adipose tissue (sWAT) of 18-week-old mice and sWAT from human volunteers. RESULTS: Male mice exhibited greater weight gain compared to female mice when challenged with HFD. Relative to increased body mass, the adipose to body weight ratio for BAT and sWAT depots was increased in HFD-fed males compared to female HFD-fed mice. Oxygen consumption, energy expenditure, respiratory exchange ratio and food consumption did not differ between males and females fed HFD. BAT mitochondria from obese females showed increased Complex I & II respiration and maximal respiration compared to lean females whereas obese males did not exhibit adaptive mitochondrial BAT respiration. Sexual dimorphism in BAT-associated gene expression in sWAT was also associated with Body Mass Index in humans. CONCLUSIONS: We show that sexual dimorphism of weight gain is reflected in mitochondrial respiration analysis. Female mice have increased metabolic flexibility to adapt to changes in energy intake by regulating energy expenditure through increased complex II and maximal mitochondrial respiration within BAT when HFD challenged and increased proton leak in sWAT mitochondria.


Subject(s)
Adipose Tissue , Mitochondria/metabolism , Obesity/metabolism , Sex Characteristics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Disease Models, Animal , Female , Male , Mice
6.
J Proteome Res ; 19(7): 2838-2844, 2020 07 02.
Article in English | MEDLINE | ID: mdl-31743035

ABSTRACT

The integration of omics techniques has seen a step change in our understanding of biological systems. However, multiomics has been impaired by mutually exclusive omic separation methods and the destructive nature of the techniques when sample is limited. We describe Simultaneous Trapping (SiTrap), a simple and effective detergent-free method that facilitates direct measurement of the proteome and metabolome in the same sample extract. This "single-pot" multiomics processing is particularly beneficial in cases when sample amounts are limited or are heterogeneous, for example, tissue biopsies. We demonstrate the value of the SiTrap methodology as an essential multiomics tool in a proof-of-principle integrated study of renal cancer tissue biopsy samples. We believe SiTrap has the potential to become an indispensable tool in translational medical research.


Subject(s)
Metabolomics , Proteomics , Metabolome , Proteome
7.
J Proteome Res ; 19(10): 3919-3935, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32646215

ABSTRACT

Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification (ob/ob), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.


Subject(s)
Adipocytes , Adipose Tissue, White , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Lipid Metabolism , Lipidomics , Mice , Mice, Inbred C57BL , Obesity/metabolism
8.
J Proteome Res ; 17(3): 946-960, 2018 03 02.
Article in English | MEDLINE | ID: mdl-28994599

ABSTRACT

With the increase in incidence of type 1 diabetes (T1DM), there is an urgent need to understand the early molecular and metabolic alterations that accompany the autoimmune disease. This is not least because in murine models early intervention can prevent the development of disease. We have applied a liquid chromatography (LC-) and gas chromatography (GC-) mass spectrometry (MS) metabolomics and lipidomics analysis of blood plasma and pancreas tissue to follow the progression of disease in three models related to autoimmune diabetes: the nonobese diabetic (NOD) mouse, susceptible to the development of autoimmune diabetes, and the NOD-E (transgenic NOD mice that express the I-E heterodimer of the major histocompatibility complex II) and NOD-severe combined immunodeficiency (SCID) mouse strains, two models protected from the development of diabetes. All three analyses highlighted the metabolic differences between the NOD-SCID mouse and the other two strains, regardless of diabetic status indicating that NOD-SCID mice are poor controls for metabolic changes in NOD mice. By comparing NOD and NOD-E mice, we show the development of T1DM in NOD mice is associated with changes in lipid, purine, and tryptophan metabolism, including an increase in kynurenic acid and a decrease in lysophospholipids, metabolites previously associated with inflammation.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Lipid Metabolism , Prediabetic State/metabolism , Purines/metabolism , Tryptophan/metabolism , Animals , Autoimmunity , Chromatography, Liquid , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Discriminant Analysis , Disease Models, Animal , Female , Gas Chromatography-Mass Spectrometry , Gene Expression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Kynurenic Acid/metabolism , Lysophospholipids/metabolism , Metabolomics/methods , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Prediabetic State/immunology , Prediabetic State/pathology , Principal Component Analysis , Protein Multimerization
11.
BMC Biol ; 13: 110, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694920

ABSTRACT

BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of ß-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARß/δ- and PPARα-dependent mechanism. Enhanced PPARß/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


Subject(s)
Cyclic GMP/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Nitrates/metabolism , Nitric Oxide/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Animal Feed/analysis , Animals , Diet , Dose-Response Relationship, Drug , Male , Organelle Biogenesis , Oxidation-Reduction , Rats , Rats, Wistar
12.
J Gen Virol ; 96(Pt 2): 395-407, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25351724

ABSTRACT

Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50 % may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1α by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1α is induced by several virus groups, but the purpose and consequences are unclear. Here, (1)H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene C16L (vΔC16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with vΔC16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1α.


Subject(s)
Energy Metabolism , Host-Pathogen Interactions , Vaccinia virus/physiology , Viral Proteins/metabolism , Cell Line , Gene Deletion , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Magnetic Resonance Spectroscopy , Mass Spectrometry , Protein Stability , Vaccinia virus/genetics , Viral Proteins/genetics
13.
FASEB J ; 27(5): 1928-38, 2013 May.
Article in English | MEDLINE | ID: mdl-23345455

ABSTRACT

Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.


Subject(s)
Antidotes/therapeutic use , Biomarkers/analysis , Cyanides/poisoning , Riboflavin/therapeutic use , Animals , Bile Acids and Salts/metabolism , Drug Evaluation, Preclinical , Heart Failure/drug therapy , Humans , Inosine/metabolism , Metabolomics , Nitroprusside/therapeutic use , Rabbits , Zebrafish
15.
Eur J Heart Fail ; 26(4): 925-935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468429

ABSTRACT

AIMS: Patients with heart failure and reduced ejection fraction (HFrEF) exhibit skeletal muscle pathology, which contributes to symptoms and decreased quality of life. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve clinical outcomes in HFrEF but their mechanism of action remains poorly understood. We aimed, therefore, to determine whether SGLT2i influence skeletal muscle pathology in patients with HFrEF. METHODS AND RESULTS: Muscle biopsies from 28 male patients with HFrEF (New York Heart association class I-III) treated with SGLT2i (>12 months) or without SGLT2i were compared. Comprehensive analyses of muscle structure (immunohistochemistry), transcriptome (RNA sequencing), and metabolome (liquid chromatography-mass spectrometry) were performed, and serum inflammatory profiling (ELISA). Experiments in mice (n = 16) treated with SGLT2i were also performed. Myofiber atrophy was ~20% less in patients taking SGLT2i (p = 0.07). Transcriptomics and follow-up measures identified a unique signature in patients taking SGLT2i related to beneficial effects on atrophy, metabolism, and inflammation. Metabolomics identified influenced tryptophan metabolism in patients taking SGLT2i: kynurenic acid was 24% higher and kynurenine was 32% lower (p < 0.001). Serum profiling identified that SGLT2i treatment was associated with lower (p < 0.05) pro-inflammatory cytokines by 26-64% alongside downstream muscle interleukin (IL)-6-JAK/STAT3 signalling (p = 008 and 0.09). Serum IL-6 and muscle kynurenine were correlated (R = 0.65; p < 0.05). Muscle pathology was lower in mice treated with SGLT2i indicative of a conserved mammalian response to treatment. CONCLUSIONS: Treatment with SGLT2i influenced skeletal muscle pathology in patients with HFrEF and was associated with anti-atrophic, anti-inflammatory, and pro-metabolic effects. These changes may be regulated via IL-6-kynurenine signalling. Together, clinical improvements following SGLT2i treatment in patients with HFrEF may be partly explained by their positive effects on skeletal muscle pathology.


Subject(s)
Heart Failure , Muscle, Skeletal , Sodium-Glucose Transporter 2 Inhibitors , Stroke Volume , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Male , Heart Failure/drug therapy , Heart Failure/physiopathology , Heart Failure/metabolism , Humans , Stroke Volume/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Animals , Mice , Middle Aged , Aged , Biopsy
16.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647333

ABSTRACT

Microvascular endothelial cells (MVECs) have many critical roles, including control of vascular tone, regulation of thrombosis, and angiogenesis. Significant heterogeneity in endothelial cell (EC) genotype and phenotype depends on their vascular bed and host disease state. The ability to isolate MVECs from tissue-specific vascular beds and individual patient groups offers the opportunity to directly compare MVEC function in different disease states. Here, using subcutaneous adipose tissue (SAT) taken at the time of insertion of cardiac implantable electronic devices (CIED), we describe a method for the isolation of a pure population of functional human subcutaneous adipose tissue MVEC (hSATMVEC) and an experimental model of hSATMVEC-adipocyte cross-talk. hSATMVEC were isolated following enzymatic digestion of SAT by incubation with anti-CD31 antibody-coated magnetic beads and passage through magnetic columns. hSATMVEC were grown and passaged on gelatin-coated plates. Experiments used cells at passages 2-4. Cells maintained classic features of EC morphology until at least passage 5. Flow cytometric assessment showed 99.5% purity of isolated hSATMVEC, defined as CD31+/CD144+/CD45-. Isolated hSATMVEC from controls had a population doubling time of approximately 57 h, and active proliferation was confirmed using a cell proliferation imaging kit. Isolated hSATMVEC function was assessed using their response to insulin stimulation and angiogenic tube-forming potential. We then established an hSATMVEC-subcutaneous adipocyte co-culture model to study cellular cross-talk and demonstrated a downstream effect of hSATMVEC on adipocyte function. hSATMVEC can be isolated from SAT taken at the time of CIED insertion and are of sufficient purity to both experimentally phenotype and study hSATMVEC-adipocyte cross-talk.


Subject(s)
Adipocytes , Endothelial Cells , Subcutaneous Fat , Humans , Adipocytes/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Subcutaneous Fat/cytology , Cell Communication/physiology
17.
Matrix Biol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925225

ABSTRACT

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.

18.
JACC Basic Transl Sci ; 9(2): 223-240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38510717

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology.

19.
Circulation ; 125(18): 2222-31, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22496159

ABSTRACT

BACKGROUND: Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood. METHODS AND RESULTS: To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmö Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; P<0.001), glutamate (0.05 to 0.14; P<0.001), and the glutamine-to-glutamate ratio (-0.05 to -0.20; P<0.001) in the discovery sample (FHS); similar associations were observed in the replication sample (MDC). High glutamine-to-glutamate ratio was associated with lower risk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (P<0.05). CONCLUSIONS: Biochemical profiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice.


Subject(s)
Metabolic Networks and Pathways , Metabolome , Aged , Amino Acids/metabolism , Animals , Body Mass Index , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Dyslipidemias/metabolism , Female , Glutamine/administration & dosage , Humans , Hypertension/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nucleotides/metabolism , Obesity/metabolism , Risk , Waist Circumference
20.
Methods Mol Biol ; 2675: 27-41, 2023.
Article in English | MEDLINE | ID: mdl-37258753

ABSTRACT

High-resolution respirometry is a state-of-the-art approach for the quantitation of mitochondrial function. Isolated mitochondria, cultured cells, or tissues/fibers are suspended in oxygenated respiration medium within a closed chamber and substrates or inhibitors added in a stepwise manner. The dissolved oxygen concentration decreases as aerobic metabolism in the specimen proceeds, recorded by an oxygen sensor within the chamber to give a quantifiable measure of oxygen consumption by the sample. Measuring oxygen consumption using a variety of respiratory substrates or respiratory complex-targeted inhibitors enables multiple respiratory pathways to be interrogated to determine the functional capacity of the mitochondria in real time. Using a substrate-uncoupler-inhibitor titration (SUIT) protocol, we have developed a method which makes use of differing chain length fatty acids to derive a measure of fatty acid-stimulated respiration through ß-oxidation in a variety of tissue types including skeletal and cardiac muscles and brown and white adipose tissues. This report provides technical details of the protocol, and the adaptations employed, to generate robust analysis of mitochondrial fatty acid ß-oxidation.


Subject(s)
Mitochondria , Oxygen Consumption , Mitochondria/metabolism , Myocardium/metabolism , Adipose Tissue/metabolism , Fatty Acids/metabolism , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL