Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625048

ABSTRACT

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Subject(s)
Neoplasms/pathology , Aneuploidy , Chromosomes/genetics , Cluster Analysis , CpG Islands , DNA Methylation , Databases, Factual , Humans , MicroRNAs/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , RNA, Messenger/metabolism
2.
Cell ; 171(3): 540-556.e25, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28988769

ABSTRACT

We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.


Subject(s)
Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Aged , Cluster Analysis , DNA Methylation , Humans , MicroRNAs/genetics , Middle Aged , Muscle, Smooth/pathology , RNA, Long Noncoding/genetics , Survival Analysis , Urinary Bladder/pathology , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/therapy
3.
Cell ; 158(4): 929-944, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25109877

ABSTRACT

Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multiplatform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All data sets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies.


Subject(s)
Neoplasms/classification , Neoplasms/genetics , Cluster Analysis , Humans , Neoplasms/pathology , Transcriptome
5.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37084275

ABSTRACT

MOTIVATION: Cancer is one of the leading causes of death worldwide. Despite significant improvements in prevention and treatment, mortality remains high for many cancer types. Hence, innovative methods that use molecular data to stratify patients and identify biomarkers are needed. Promising biomarkers can also be inferred from competing endogenous RNA (ceRNA) networks that capture the gene-miRNA gene regulatory landscape. Thus far, the role of these biomarkers could only be studied globally but not in a sample-specific manner. To mitigate this, we introduce spongEffects, a novel method that infers subnetworks (or modules) from ceRNA networks and calculates patient- or sample-specific scores related to their regulatory activity. RESULTS: We show how spongEffects can be used for downstream interpretation and machine learning tasks such as tumor classification and for identifying subtype-specific regulatory interactions. In a concrete example of breast cancer subtype classification, we prioritize modules impacting the biology of the different subtypes. In summary, spongEffects prioritizes ceRNA modules as biomarkers and offers insights into the miRNA regulatory landscape. Notably, these module scores can be inferred from gene expression data alone and can thus be applied to cohorts where miRNA expression information is lacking. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/devel/bioc/html/SPONGE.html.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , Breast Neoplasms/genetics , Machine Learning , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics
6.
Bioinformatics ; 35(21): 4488-4489, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30923832

ABSTRACT

MOTIVATION: Transcriptional networks are models that allow the biological state of cells or tumours to be described. Such networks consist of connected regulatory units known as regulons, each comprised of a regulator and its targets. Inferring a transcriptional network can be a helpful initial step in characterizing the different phenotypes within a cohort. While the network itself provides no information on molecular differences between samples, the per-sample state of each regulon, i.e. the regulon activity, can be used for describing subtypes in a cohort. Integrating regulon activities with clinical data and outcomes would extend this characterization of differences between subtypes. RESULTS: We describe RTNsurvival, an R/Bioconductor package that calculates regulon activity profiles using transcriptional networks reconstructed by the RTN package, gene expression data, and a two-tailed Gene Set Enrichment Analysis. Given regulon activity profiles across a cohort, RTNsurvival can perform Kaplan-Meier analyses and Cox Proportional Hazards regressions, while also considering confounding variables. The Supplementary Information provides two case studies that use data from breast and liver cancer cohorts and features uni- and multivariate regulon survival analysis. AVAILABILITY AND IMPLEMENTATION: RTNsurvival is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/RTNsurvival/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Gene Expression , Gene Regulatory Networks , Probability , Survival Analysis
7.
Bioinformatics ; 35(24): 5357-5358, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31250887

ABSTRACT

MOTIVATION: Transcription factors (TFs) are key regulators of gene expression, and can activate or repress multiple target genes, forming regulatory units, or regulons. Understanding downstream effects of these regulators includes evaluating how TFs cooperate or compete within regulatory networks. Here we present RTNduals, an R/Bioconductor package that implements a general method for analyzing pairs of regulons. RESULTS: RTNduals identifies a dual regulon when the number of targets shared between a pair of regulators is statistically significant. The package extends the RTN (Reconstruction of Transcriptional Networks) package, and uses RTN transcriptional networks to identify significant co-regulatory associations between regulons. The Supplementary Information reports two case studies for TFs using the METABRIC and TCGA breast cancer cohorts. AVAILABILITY AND IMPLEMENTATION: RTNduals is written in the R language, and is available from the Bioconductor project at http://bioconductor.org/packages/RTNduals/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Gene Expression , Gene Regulatory Networks , Regulon , Transcription Factors
8.
N Engl J Med ; 374(2): 135-45, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26536169

ABSTRACT

BACKGROUND: Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. METHODS: We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).


Subject(s)
Carcinoma, Papillary/metabolism , Kidney Neoplasms/metabolism , Mutation , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-met/metabolism , Carcinoma, Papillary/genetics , CpG Islands/physiology , DNA Methylation , Humans , Kidney Neoplasms/genetics , MicroRNAs/chemistry , NF-E2-Related Factor 2/genetics , Phenotype , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/genetics , RNA, Messenger/chemistry , RNA, Neoplasm/chemistry , Sequence Analysis, RNA , Signal Transduction/physiology
9.
Nature ; 497(7447): 67-73, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23636398

ABSTRACT

We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours.


Subject(s)
Endometrial Neoplasms/classification , Endometrial Neoplasms/genetics , Genome, Human/genetics , Breast Neoplasms/genetics , Chromosome Aberrations , DNA Copy Number Variations/genetics , DNA Mutational Analysis , DNA Polymerase II/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Female , Gene Expression Regulation, Neoplastic , Genomics , Humans , Ovarian Neoplasms/genetics , Poly-ADP-Ribose Binding Proteins , Signal Transduction , Transcription Factors/genetics
10.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26061751

ABSTRACT

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Subject(s)
DNA, Neoplasm/analysis , Genes, p53 , Glioma/genetics , Mutation , Adolescent , Adult , Aged , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 19 , Cluster Analysis , Female , Glioblastoma/genetics , Glioma/metabolism , Glioma/mortality , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Proportional Hazards Models , Sequence Analysis, DNA , Signal Transduction
11.
N Engl J Med ; 368(22): 2059-74, 2013 05 30.
Article in English | MEDLINE | ID: mdl-23634996

ABSTRACT

BACKGROUND: Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS: We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS: AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS: We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Adult , CpG Islands , DNA Methylation , Epigenomics , Female , Gene Expression , Gene Fusion , Genome, Human , Humans , Leukemia, Myeloid, Acute/classification , Male , MicroRNAs/genetics , Middle Aged , Nucleophosmin , Sequence Analysis, DNA/methods
12.
Bioinformatics ; 30(23): 3402-4, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25143290

ABSTRACT

Large datasets can be screened for sequences from a specific organism, quickly and with low memory requirements, by a data structure that supports time- and memory-efficient set membership queries. Bloom filters offer such queries but require that false positives be controlled. We present BioBloom Tools, a Bloom filter-based sequence-screening tool that is faster than BWA, Bowtie 2 (popular alignment algorithms) and FACS (a membership query algorithm). It delivers accuracies comparable with these tools, controls false positives and has low memory requirements. Availability and implementaion: www.bcgsc.ca/platform/bioinfo/software/biobloomtools.


Subject(s)
Sequence Analysis, DNA/methods , Software , Algorithms , Animals , Humans , Mice
13.
Cancer Res Commun ; 3(3): 404-419, 2023 03.
Article in English | MEDLINE | ID: mdl-36911097

ABSTRACT

While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity. Using Cytometry by Time-of-Flight, we found that tumor-derived GCSF altered myeloid cell distribution both locally and systemically. We distinguished a large number of GCSF-induced immune cell subset and signal transduction pathway perturbations in tumor-bearing mice, including a prominent increase in immature neutrophil/myeloid-derived suppressor cell (Neut/MDSC) subsets and tumor-resident PD-L1+ Neut/MDSCs. GCSF expression was also linked to distinct tumor-associated MF populations, decreased conventional DCs, and splenomegaly characterized by increased splenic progenitors with diminished DC differentiation potential. GCSF-dependent dysregulation of DC development was recapitulated in bone marrow cultures in vitro, using medium derived from GCSF-expressing tumor cell cultures. Importantly, tumor-derived GCSF impaired T-cell adoptive cell therapy effectiveness and was associated with increased tumor volume and diminished survival of mice with mammary cancer. Treatment with neutralizing anti-GCSF antibodies reduced colonic and circulatory Neut/MDSCs, normalized colonic immune cell composition and diminished tumor burden in a spontaneous model of mouse colon cancer. Analysis of human colorectal cancer patient gene expression data revealed a significant correlation between survival and low GCSF and Neut/MDSC gene expression. Our data suggest that normalizing GCSF bioactivity may improve immunotherapy in cancers associated with GCSF overexpression. Significance: Tumor-derived GCSF leads to systemic immune population changes. GCSF blockade restores immune populations, improves immunotherapy, and reduces tumor size, paralleling human colorectal cancer data. GCSF inhibition may synergize with current immunotherapies to treat GCSF-secreting tumors.


Subject(s)
Colonic Neoplasms , Myeloid-Derived Suppressor Cells , Humans , Mice , Animals , Myeloid Cells , Signal Transduction , Lymphocytes, Tumor-Infiltrating , Colonic Neoplasms/metabolism
14.
Nat Commun ; 14(1): 2126, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105962

ABSTRACT

Checkpoint immunotherapy (CPI) has increased survival for some patients with advanced-stage bladder cancer (BCa). However, most patients do not respond. Here, we characterized the tumor and immune microenvironment in pre- and post-treatment tumors from the PURE01 neoadjuvant pembrolizumab immunotherapy trial, using a consolidative approach that combined transcriptional and genetic profiling with digital spatial profiling. We identify five distinctive genetic and transcriptomic programs and validate these in an independent neoadjuvant CPI trial to identify the features of response or resistance to CPI. By modeling the regulatory network, we identify the histone demethylase KDM5B as a repressor of tumor immune signaling pathways in one resistant subtype (S1, Luminal-excluded) and demonstrate that inhibition of KDM5B enhances immunogenicity in FGFR3-mutated BCa cells. Our study identifies signatures associated with response to CPI that can be used to molecularly stratify patients and suggests therapeutic alternatives for subtypes with poor response to neoadjuvant immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Urinary Bladder Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoadjuvant Therapy , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Gene Expression Profiling , Muscles/pathology , Tumor Microenvironment/genetics
15.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712010

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

16.
Oncogene ; 42(22): 1857-1873, 2023 06.
Article in English | MEDLINE | ID: mdl-37095257

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostate/metabolism , DNA Damage/genetics , Transforming Growth Factor beta/genetics , Eye Proteins/metabolism , Transcription Factors/genetics
17.
Sci Rep ; 12(1): 16538, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192513

ABSTRACT

Human cancers display a restricted set of expression profiles, despite diverse mutational drivers. This has led to the hypothesis that select sets of transcription factors act on similar target genes as an integrated network, buffering a tumor's transcriptional state. Noninvasive papillary urothelial carcinoma (NIPUC) with higher cell cycle activity has higher risk of recurrence and progression. In this paper, we describe a transcriptional network of cell cycle dysregulation in NIPUC, which was delineated using the ARACNe algorithm applied to expression data from a new cohort (n = 81, RNA sequencing), and two previously published cohorts. The transcriptional network comprised 121 transcription factors, including the pluripotency factors SOX2 and SALL4, the sex hormone binding receptors ESR1 and PGR, and multiple homeobox factors. Of these 121 transcription factors, 65 and 56 were more active in tumors with greater and less cell cycle activity, respectively. When clustered by activity of these transcription factors, tumors divided into High Cell Cycle versus Low Cell Cycle groups. Tumors in the High Cell Cycle group demonstrated greater mutational burden and copy number instability. A putative mutational driver of cell cycle dysregulation, such as homozygous loss of CDKN2A, was found in only 50% of High Cell Cycle NIPUC, suggesting a prominent role of transcription factor activity in driving cell cycle dysregulation. Activity of the 121 transcription factors strongly associated with expression of EZH2 and other members of the PRC2 complex, suggesting regulation by this complex influences expression of the transcription factors in this network. Activity of transcription factors in this network also associated with signatures of pluripotency and epithelial-to-mesenchymal transition (EMT), suggesting they play a role in driving evolution to invasive carcinoma. Consistent with this, these transcription factors differed in activity between NIPUC and invasive urothelial carcinoma.


Subject(s)
Carcinoma in Situ , Carcinoma, Papillary , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Carcinoma, Papillary/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Cell Cycle/genetics , Gene Regulatory Networks , Humans , Transcription Factors/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
18.
Sci Adv ; 8(40): eabo8043, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36197969

ABSTRACT

The long-term survival of patients with advanced urothelial carcinoma (UCa) is limited because of innate resistance to treatment. We identified elevated expression of the histone methyltransferase EZH2 as a hallmark of aggressive UCa and hypothesized that EZH2 inhibition, via a small-molecule catalytic inhibitor, might have antitumor effects in UCa. Here, in a carcinogen-induced mouse bladder cancer model, a reduction in tumor progression and an increase in immune infiltration upon EZH2 inhibition were observed. Treatment of mice with EZH2i causes an increase in MHC class II expression in the urothelium and can activate infiltrating T cells. Unexpectedly, we found that the lack of an intact adaptive immune system completely abolishes the antitumor effects induced by EZH2 catalytic inhibition. These findings show that immune evasion is the only important determinant for the efficacy of EZH2 catalytic inhibition treatment in a UCa model.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Carcinogens , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/metabolism , Histone Methyltransferases , Mice , Urinary Bladder Neoplasms/metabolism
19.
Nat Commun ; 13(1): 6575, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323682

ABSTRACT

Cancers arising from the bladder urothelium often exhibit lineage plasticity with regions of urothelial carcinoma adjacent to or admixed with regions of divergent histomorphology, most commonly squamous differentiation. To define the biologic basis for and clinical significance of this morphologic heterogeneity, here we perform integrated genomic analyses of mixed histology bladder cancers with separable regions of urothelial and squamous differentiation. We find that squamous differentiation is a marker of intratumoral genomic and immunologic heterogeneity in patients with bladder cancer and a biomarker of intrinsic immunotherapy resistance. Phylogenetic analysis confirms that in all cases the urothelial and squamous regions are derived from a common shared precursor. Despite the presence of marked genomic heterogeneity between co-existent urothelial and squamous differentiated regions, no recurrent genomic alteration exclusive to the urothelial or squamous morphologies is identified. Rather, lineage plasticity in bladder cancers with squamous differentiation is associated with loss of expression of FOXA1, GATA3, and PPARG, transcription factors critical for maintenance of urothelial cell identity. Of clinical significance, lineage plasticity and PD-L1 expression is coordinately dysregulated via FOXA1, with patients exhibiting morphologic heterogeneity pre-treatment significantly less likely to respond to immune checkpoint inhibitors.


Subject(s)
Carcinoma, Squamous Cell , Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Transitional Cell/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Phylogeny , Urinary Bladder Neoplasms/pathology , Cell Lineage
20.
Nat Commun ; 13(1): 4000, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810190

ABSTRACT

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.


Subject(s)
Melanoma , MicroRNAs , RNA, Long Noncoding , DNA Methylation , Humans , Melanoma/metabolism , Melanoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL