Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34822784

ABSTRACT

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Receptor, Muscarinic M1/agonists , Aged , Aged, 80 and over , Aging/pathology , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amino Acid Sequence , Animals , Blood Pressure/drug effects , CHO Cells , Cholinesterase Inhibitors/pharmacology , Cricetulus , Crystallization , Disease Models, Animal , Dogs , Donepezil/pharmacology , Electroencephalography , Female , HEK293 Cells , Heart Rate/drug effects , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Molecular Dynamics Simulation , Nerve Degeneration/complications , Nerve Degeneration/pathology , Primates , Rats , Receptor, Muscarinic M1/chemistry , Signal Transduction , Structural Homology, Protein
2.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354703

ABSTRACT

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Subject(s)
Protein Tyrosine Phosphatases , Signal Transduction , Protein Tyrosine Phosphatases/metabolism , CD28 Antigens , Receptors, Immunologic
3.
New Phytol ; 244(2): 654-669, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39149848

ABSTRACT

Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.


Subject(s)
Carbon , Coleoptera , Droughts , Phloem , Pinus , Terpenes , Pinus/microbiology , Pinus/physiology , Phloem/metabolism , Carbon/metabolism , Terpenes/metabolism , Animals , Coleoptera/physiology , Models, Biological , Ophiostoma/physiology , Plant Diseases/microbiology
4.
Nature ; 553(7686): 111-114, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300009

ABSTRACT

The complement system is a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins including C5a and C3a. C5a exerts a pro-inflammatory effect via the G-protein-coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5aR1, also known as CD88) that is expressed on cells of myeloid origin. Inhibitors of the complement system have long been of interest as potential drugs for the treatment of diseases such as sepsis, rheumatoid arthritis, Crohn's disease and ischaemia-reperfusion injuries. More recently, a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. Peptide antagonists based on the C5a ligand have progressed to phase 2 trials in psoriasis and rheumatoid arthritis; however, these compounds exhibited problems with off-target activity, production costs, potential immunogenicity and poor oral bioavailability. Several small-molecule competitive antagonists for C5aR1, such as W-54011 and NDT9513727, have been identified by C5a radioligand-binding assays. NDT9513727 is a non-peptide inverse agonist of C5aR1, and is highly selective for the primate and gerbil receptors over those of other species. Here, to study the mechanism of action of C5a antagonists, we determine the structure of a thermostabilized C5aR1 (known as C5aR1 StaR) in complex with NDT9513727. We found that the small molecule bound between transmembrane helices 3, 4 and 5, outside the helical bundle. One key interaction between the small molecule and residue Trp2135.49 seems to determine the species selectivity of the compound. The structure demonstrates that NDT9513727 exerts its inverse-agonist activity through an extra-helical mode of action.


Subject(s)
Benzodioxoles/chemistry , Benzodioxoles/metabolism , Imidazoles/chemistry , Imidazoles/metabolism , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/chemistry , Animals , Benzodioxoles/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , HEK293 Cells , Humans , Imidazoles/pharmacology , Models, Molecular , Mutation , Protein Stability , Protein Structure, Secondary , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
5.
New Phytol ; 240(1): 92-104, 2023 10.
Article in English | MEDLINE | ID: mdl-37430467

ABSTRACT

Shifts in the age or turnover time of non-structural carbohydrates (NSC) may underlie changes in tree growth under long-term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation. We measured NSC age (Δ14 C) along with a suite of ecophysiological metrics in Pinus edulis trees experiencing either extreme short-term drought (-90% ambient precipitation plot, 2020-2021) or a decade of severe drought (-45% plot, 2010-2021). We tested the hypothesis that carbon starvation - consumption exceeding synthesis and storage - increases the age of sapwood NSC. One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long-term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (-75%), basal area increment (-39%), and bole respiration rates (-28%). Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.


Subject(s)
Carbon , Pinus , Carbon/metabolism , Pinus/physiology , Droughts , Carbohydrates/chemistry , Starch/metabolism , Trees/physiology , Carbohydrate Metabolism
6.
Nature ; 546(7657): 254-258, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28562585

ABSTRACT

Glucagon-like peptide 1 (GLP-1) regulates glucose homeostasis through the control of insulin release from the pancreas. GLP-1 peptide agonists are efficacious drugs for the treatment of diabetes. To gain insight into the molecular mechanism of action of GLP-1 peptides, here we report the crystal structure of the full-length GLP-1 receptor bound to a truncated peptide agonist. The peptide agonist retains an α-helical conformation as it sits deep within the receptor-binding pocket. The arrangement of the transmembrane helices reveals hallmarks of an active conformation similar to that observed in class A receptors. Guided by this structural information, we design peptide agonists with potent in vivo activity in a mouse model of diabetes.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/chemistry , Peptides/chemistry , Peptides/pharmacology , Animals , Binding Sites , Crystallography, X-Ray , Dose-Response Relationship, Drug , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Male , Mice , Models, Molecular , Peptides/metabolism , Protein Conformation , Rats , Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Glucagon/chemistry
8.
Nature ; 533(7602): 274-7, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27111510

ABSTRACT

Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.


Subject(s)
Pyrazoles/metabolism , Receptors, Glucagon/antagonists & inhibitors , Receptors, Glucagon/chemistry , beta-Alanine/analogs & derivatives , Allosteric Site/drug effects , Crystallography, X-Ray , Glucagon/metabolism , Glucagon/pharmacology , Humans , Ligands , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Protein Conformation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Receptors, Corticotropin-Releasing Hormone/chemistry , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Glucagon/classification , Receptors, Glucagon/metabolism , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Alanine/pharmacology
9.
J Biol Chem ; 295(52): 18436-18448, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33127646

ABSTRACT

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Epithelial Cell Adhesion Molecule/immunology , Membrane Proteins/immunology , Receptors, Chimeric Antigen/immunology , Single-Chain Antibodies/immunology , Animals , Cricetinae , Cricetulus , Gene Library , Humans , Jurkat Cells , Protein Binding
10.
Biochemistry ; 59(23): 2125-2134, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32437610

ABSTRACT

The structural and functional properties of G protein-coupled receptors (GPCRs) are often studied in a detergent micellar environment, but many GPCRs tend to denature or aggregate in short alkyl chain detergents. In our previous work [Lee, S., et al. (2016) J. Am. Chem. Soc. 138, 15425-15433], we showed that GPCRs in alkyl glucosides were highly dynamic, resulting in the penetration of detergent molecules between transmembrane α-helices, which is the initial step in receptor denaturation. Although this was not observed for GPCRs in dodecyl maltoside (DDM, also known as lauryl maltoside), even this detergent is not mild enough to preserve the integrity of many GPCRs during purification. Lauryl maltose neopentylglycol (LMNG) detergents have been found to have significant advantages for purifying GPCRs in a native state as they impart more stability to the receptor than DDM. To gain insights into how they stabilize GPCRs, we used atomistic molecular dynamics simulations of wild type adenosine A2A receptor (WT-A2AR), thermostabilized A2AR (tA2AR), and wild type ß2-adrenoceptor (ß2AR) in a variety of detergents (LMNG, DMNG, OGNG, and DDM). Analysis of molecular dynamics simulations of tA2AR in LMNG, DMNG, and OGNG showed that this series of detergents exhibited behavior very similar to that of an analogous series of detergents DDM, DM, and OG in our previous study. However, there was a striking difference upon comparison of the behavior of LMNG to that of DDM. LMNG showed considerably less motion than DDM, which resulted in the enhanced density of the aliphatic chains around the hydrophobic regions of the receptor and considerably more hydrogen bond formation between the head groups. This contributed to enhanced interaction energies between both detergent molecules and between the receptor and detergent, explaining the enhanced stability of GPCRs purified in this detergent. Branched detergents occlude between transmembrane helices and reduce their flexibility. Our results provide a rational foundation to develop detergent variants for stabilizing membrane proteins.


Subject(s)
Detergents/pharmacology , Micelles , Receptors, G-Protein-Coupled/chemistry , Detergents/chemistry , HEK293 Cells , Humans , Molecular Dynamics Simulation , Molecular Structure , Protein Stability/drug effects
11.
J Am Chem Soc ; 138(47): 15425-15433, 2016 11 30.
Article in English | MEDLINE | ID: mdl-27792324

ABSTRACT

Stability of detergent-solubilized G-protein-coupled receptors (GPCRs) is crucial for their purification in a biologically relevant state, and it is well-known that short chain detergents such as octylglucoside are more denaturing than long chain detergents such as dodecylmaltoside. However, the molecular basis for this phenomenon is poorly understood. To gain insights into the mechanism of detergent destabilization of GPCRs, we used atomistic molecular dynamics simulations of thermostabilized adenosine receptor (A2AR) mutants embedded in either a lipid bilayer or detergent micelles of alkylmaltosides and alkylglucosides. A2AR mutants in dodecylmaltoside or phospholipid showed low flexibility and good interhelical packing. In contrast, A2AR mutants in either octylglucoside or nonylglucoside showed decreased α-helicity in transmembrane regions, decreased α-helical packing, and the interpenetration of detergent molecules between transmembrane α-helices. This was not observed in octylglucoside containing phospholipid. Cholesteryl hemisuccinate in dodecylmaltoside increased the energetic stability of the receptor by wedging into crevices on the hydrophobic surface of A2AR, increasing packing interactions within the receptor and stiffening the detergent micelle. The data suggest a three-stage process for the initial events in the destabilization of GPCRs by octylglucoside: (i) highly mobile detergent molecules form small micelles around the receptor; (ii) loss of α-helicity and decreased interhelical packing interactions in transmembrane regions are promoted by increased receptor thermal motion; (iii) transient separation of transmembrane helices allowed penetration of detergent molecules into the core of the receptor. The relative hydration of the headgroup and alkyl chain correlates with detergent harshness and suggests new avenues to develop milder versions of octylglucoside for receptor crystallization.


Subject(s)
Detergents/chemistry , Molecular Dynamics Simulation , Receptor, Adenosine A2A/chemistry , Mutation , Protein Stability , Receptor, Adenosine A2A/genetics
12.
Protein Expr Purif ; 106: 1-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448824

ABSTRACT

5-HT2c G-protein coupled receptors located in the central nervous system bind the endogenous neurotransmitters serotonin and couple to G protein to mediate excitatory neurotransmission, which inhibits dopamine and norepinephrine release in the brain. Thus, 5-HT2c receptors play important roles in cognitive function and are potent drug targets. Structural information is needed to elucidate the molecular mechanism of ligand-binding and receptor-activation of the 5-HT2c receptor. Lacking of an efficient expression system that produces sufficient amounts of active and homogenous receptors hinders progress in the functional and structural characterization of the 5-HT2c receptor. We present here a protocol which can be used easily to obtain milligram amount of purified rat 5-HT2c receptors. We established this protocol by protein engineering and optimization of expression and purification based on radioligand-binding assay. The purified and well-characterized rat 5-HT2c receptors are active, stable, homogenous, and ready for 2-dimensional and 3-dimensional crystallization experiments.


Subject(s)
Chromatography, Affinity/methods , Receptor, Serotonin, 5-HT2C/isolation & purification , Receptor, Serotonin, 5-HT2C/metabolism , Amino Acid Sequence , Animals , Crystallization , Detergents/metabolism , Gene Expression , HEK293 Cells , Humans , Mass Spectrometry , Mice , Molecular Sequence Data , Protein Stability , Radioligand Assay , Rats , Receptor, Serotonin, 5-HT2C/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Solubility , Temperature
13.
MAbs ; 16(1): 2341443, 2024.
Article in English | MEDLINE | ID: mdl-38666503

ABSTRACT

The development of bispecific antibodies that bind at least two different targets relies on bringing together multiple binding domains with different binding properties and biophysical characteristics to produce a drug-like therapeutic. These building blocks play an important role in the overall quality of the molecule and can influence many important aspects from potency and specificity to stability and half-life. Single-domain antibodies, particularly camelid-derived variable heavy domain of heavy chain (VHH) antibodies, are becoming an increasingly popular choice for bispecific construction due to their single-domain modularity, favorable biophysical properties, and potential to work in multiple antibody formats. Here, we review the use of VHH domains as building blocks in the construction of multispecific antibodies and the challenges in creating optimized molecules. In addition to exploring traditional approaches to VHH development, we review the integration of machine learning techniques at various stages of the process. Specifically, the utilization of machine learning for structural prediction, lead identification, lead optimization, and humanization of VHH antibodies.


Subject(s)
Antibodies, Bispecific , Machine Learning , Single-Domain Antibodies , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Humans , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Animals , Protein Engineering/methods , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/chemistry
14.
Front Endocrinol (Lausanne) ; 12: 792912, 2021.
Article in English | MEDLINE | ID: mdl-35095763

ABSTRACT

The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein ß subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gß subunit.


Subject(s)
Amino Acid Motifs/physiology , Receptors, Calcitonin Gene-Related Peptide/ultrastructure , Receptors, Corticotropin-Releasing Hormone/ultrastructure , Receptors, Glucagon/ultrastructure , Calcitonin Receptor-Like Protein/metabolism , Calcitonin Receptor-Like Protein/physiology , Calcitonin Receptor-Like Protein/ultrastructure , Calcium Signaling , Cyclic AMP/metabolism , HEK293 Cells , Humans , MAP Kinase Signaling System , Molecular Dynamics Simulation , Protein Domains , Protein Structure, Tertiary , Receptor Activity-Modifying Protein 1/metabolism , Receptor Activity-Modifying Protein 1/physiology , Receptor Activity-Modifying Protein 1/ultrastructure , Receptors, Calcitonin Gene-Related Peptide/metabolism , Receptors, Calcitonin Gene-Related Peptide/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Corticotropin-Releasing Hormone/physiology , Receptors, G-Protein-Coupled , Receptors, Glucagon/metabolism , Receptors, Glucagon/physiology
15.
Curr Opin Immunol ; 19(5): 596-602, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17709235

ABSTRACT

There can be little doubt that 2006 turned out to be the annus horribilis for therapeutic cloning by somatic nuclear transfer (SNT). As the full extent of the fraud surrounding the generation of patient-specific embryonic stem (ES) cell lines became apparent, hopes began to fade for the advent of cell replacement therapies (CRT), free from the confounding issues of immune rejection. While the dust begins to settle, it is perhaps pertinent to ask whether the promise of SNT is still worth pursuing or whether alternative strategies for immune evasion might help fill the void.


Subject(s)
Embryonic Stem Cells/immunology , Pluripotent Stem Cells/immunology , Stem Cell Transplantation , Transplantation Tolerance/immunology , Animals , Embryonic Stem Cells/metabolism , Humans , Nuclear Transfer Techniques , Pluripotent Stem Cells/metabolism
16.
Proc Natl Acad Sci U S A ; 104(52): 20920-5, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18093946

ABSTRACT

Although human embryonic stem (ES) cells may one day provide a renewable source of tissues for cell replacement therapy (CRT), histoincompatibility remains a significant barrier to their clinical application. Current estimates suggest that surprisingly few cell lines may be required to facilitate rudimentary tissue matching. Nevertheless, the degree of disparity between donor and recipient that may prove acceptable, and the extent of matching that is therefore required, remain unknown. To address this issue using a mouse model of CRT, we have derived a panel of ES cell lines that differ from CBA/Ca recipients at defined genetic loci. Here, we show that even expression of minor histocompatibility (mH) antigens is sufficient to provoke acute rejection of tissues differentiated from ES cells. Nevertheless, despite their immunogenicity in vivo, transplantation tolerance may be readily established by using minimal host conditioning with nondepleting monoclonal antibodies specific for the T cell coreceptors, CD4 and CD8. This propensity for tolerance could be attributed to the paucity of professional antigen-presenting cells and the expression of transforming growth factor (TGF)-beta(2). Together, these factors contribute to a state of acquired immune privilege that favors the polarization of infiltrating T cells toward a regulatory phenotype. Although the natural privileged status of ES cell-derived tissues is, therefore, insufficient to overcome even mH barriers, our findings suggest it may be harnessed effectively for the induction of dominant tolerance with minimal therapeutic intervention.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/immunology , Immune Tolerance , Animals , Antibodies, Monoclonal/chemistry , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Graft Survival , Humans , Immune System , Kinetics , Mice , Mice, Inbred C57BL , Minor Histocompatibility Antigens/chemistry , Models, Biological , Skin/metabolism , Transforming Growth Factor beta2/metabolism
17.
Methods Mol Biol ; 380: 347-53, 2007.
Article in English | MEDLINE | ID: mdl-17876104

ABSTRACT

The subcapsular region of the kidney has frequently served as the site of choice for transplantation studies owing to a number of compelling reasons. High levels of vascularization provide a ready blood supply, whereas the subcapsular region itself can accommodate tissues of a range of size and sources. Historically, transplantation to this site has proven important for studies of both central and peripheral tolerance. Here, the transplantation technique and its major variations are described for broad application.


Subject(s)
Islets of Langerhans Transplantation/methods , Kidney , Transplantation, Heterotopic/methods , Animals , Islets of Langerhans Transplantation/immunology , Transplantation, Homologous
18.
Structure ; 25(8): 1275-1285.e4, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28712806

ABSTRACT

The adenosine A1 and A2A receptors belong to the purinergic family of G protein-coupled receptors, and regulate diverse functions of the cardiovascular, respiratory, renal, inflammation, and CNS. Xanthines such as caffeine and theophylline are weak, non-selective antagonists of adenosine receptors. Here we report the structure of a thermostabilized human A1 receptor at 3.3 Å resolution with PSB36, an A1-selective xanthine-based antagonist. This is compared with structures of the A2A receptor with PSB36 (2.8 Å resolution), caffeine (2.1 Å), and theophylline (2.0 Å) to highlight features of ligand recognition which are common across xanthines. The structures of A1R and A2AR were analyzed to identify the differences that are important selectivity determinants for xanthine ligands, and the role of T2707.35 in A1R (M2707.35 in A2AR) in conferring selectivity was confirmed by mutagenesis. The structural differences confirmed to lead to selectivity can be utilized in the design of new subtype-selective A1R or A2AR antagonists.


Subject(s)
Caffeine/pharmacology , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A2A/chemistry , Theophylline/pharmacology , Binding Sites , Caffeine/chemistry , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Binding , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Substrate Specificity , Theophylline/chemistry
19.
Stem Cell Rev ; 1(2): 159-67, 2005.
Article in English | MEDLINE | ID: mdl-17142851

ABSTRACT

The potential of human embryonic stem (ES) cells to meet the growing demand for cell types and tissues for the treatment of chronic and degenerative diseases has been widely acclaimed. Nevertheless, their use in cell replacement therapy poses a number of significant challenges, not least of which is their subsequent rejection by the recipient's immune system. Here we explore the extent of the immunological barriers encountered and evaluate the potential of different approaches to overcoming these issues of which somatic nuclear transfer (SNT) and the induction of transplanation tolerance are currently the most promising.


Subject(s)
Cell- and Tissue-Based Therapy , Embryonic Stem Cells/immunology , Immunity , Animals , Dendritic Cells/cytology , Dendritic Cells/immunology , Embryonic Stem Cells/cytology , Humans , Stem Cell Transplantation
20.
J Med Chem ; 55(5): 1904-9, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22250781

ABSTRACT

Virtual screening was performed against experimentally enabled homology models of the adenosine A(2A) receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11-13 from 5, pK(I) = 7.5-8.5, 13- to >100-fold selective versus adenosine A(1); 14-16 from 1, pK(I) = 7.9-9.0, 19- to 59-fold selective).


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Databases, Factual , Models, Molecular , Receptor, Adenosine A2A/chemistry , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Binding Sites , CHO Cells , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacology , Cricetinae , Cricetulus , HEK293 Cells , Humans , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Radioligand Assay , Receptor, Adenosine A2A/metabolism , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , Triazines/pharmacology , Turkeys
SELECTION OF CITATIONS
SEARCH DETAIL