Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33667348

ABSTRACT

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Subject(s)
Genes, Plant , Genetic Pleiotropy/genetics , Homeodomain Proteins/genetics , Plant Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Alleles , Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Chromatin/metabolism , Gene Expression Regulation, Plant , Inflorescence/genetics , Solanum lycopersicum/genetics , Mutagenesis , Plant Development/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Solanaceae/genetics , Solanaceae/growth & development
2.
Cell ; 182(1): 145-161.e23, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32553272

ABSTRACT

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.


Subject(s)
Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Genomic Structural Variation , Solanum lycopersicum/genetics , Alleles , Cytochrome P-450 Enzyme System/genetics , Ecotype , Epistasis, Genetic , Fruit/genetics , Gene Duplication , Genome, Plant , Genotype , Inbreeding , Molecular Sequence Annotation , Phenotype , Plant Breeding , Quantitative Trait Loci/genetics
3.
Hortic Res ; 11(6): uhae126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919555

ABSTRACT

Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.

4.
Nat Plants ; 8(4): 346-355, 2022 04.
Article in English | MEDLINE | ID: mdl-35347264

ABSTRACT

Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.


Subject(s)
Protein Sorting Signals , Solanum lycopersicum , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Meristem/metabolism , Peptides/metabolism , Plant Stems/genetics , Plant Stems/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL