Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Am Acad Dermatol ; 78(1): 29-39.e7, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146147

ABSTRACT

BACKGROUND: Intrinsic and extrinsic factors, including ultraviolet irradiation, lead to visible signs of skin aging. OBJECTIVE: We evaluated molecular changes occurring in photoexposed and photoprotected skin of white women 20 to 74 years of age, some of whom appeared substantially younger than their chronologic age. METHODS: Histologic and transcriptomics profiling were conducted on skin biopsy samples of photoexposed (face and dorsal forearm) or photoprotected (buttocks) body sites from 158 women. 23andMe genotyping determined genetic ancestry. RESULTS: Gene expression and ontologic analysis revealed progressive changes from the 20s to the 70s in pathways related to oxidative stress, energy metabolism, senescence, and epidermal barrier; these changes were accelerated in the 60s and 70s. The gene expression patterns from the subset of women who were younger-appearing were similar to those in women who were actually younger. LIMITATIONS: Broader application of these findings (eg, across races and Fitzpatrick skin types) will require further studies. CONCLUSIONS: This study demonstrates a wide range of molecular processes in skin affected by aging, providing relevant targets for improving the condition of aging skin at different life stages and defining a molecular pattern of epidermal gene expression in women who appear younger than their chronologic age.


Subject(s)
Genetic Predisposition to Disease , Skin Aging/genetics , Skin Aging/physiology , Ultraviolet Rays/adverse effects , Adult , Aged , Aged, 80 and over , Biopsy, Needle , Facial Dermatoses/genetics , Facial Dermatoses/pathology , Female , Humans , Immunohistochemistry , Middle Aged , Prognosis , Risk Factors , Skin Aging/pathology , White People , Young Adult
2.
J Invest Dermatol ; 142(7): 1934-1946.e21, 2022 07.
Article in English | MEDLINE | ID: mdl-34890626

ABSTRACT

Understanding the changes in the skin microbiome and their relationship to host skin factors during aging remains largely unknown. To better understand this phenomenon, we collected samples for metagenomic and host skin factor analyses from the forearm, buttock, and facial skin from 158 Caucasian females aged 20‒24, 30‒34, 40‒44, 50‒54, 60‒64, and 70‒74 years. Metagenomics analysis was performed using 16S ribosomal RNA gene sequencing, whereas host sebocyte gland area, skin lipids, natural moisturizing factors, and antimicrobial peptides measurements were also performed. These analyses showed that skin bacterial diversity increased at all the skin sites with increasing age. Of the bacterial genera with an average relative abundance >1%, only Lactobacillus and Cutibacterium demonstrated a significant change (decrease) in abundance at all sampled skin sites with increasing age. Additional bacterial genera demonstrated significant age- and site-specific changes in abundance. Analysis of sebocyte area, natural moisturizing factors, lipids, and antimicrobial peptides showed an age-related decrease in sebocyte area and increases in natural moisturizing factors/antimicrobial peptides/skin lipids, all of which correlated with changes in specific bacterial genera. In conclusion, the human skin microbiome undergoes age-associated alterations that may reflect underlying age-related changes in cutaneous biology.


Subject(s)
Microbiota , Adult , Aging , Bacteria/genetics , Female , Humans , Lipids , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Skin/microbiology
3.
Protein Sci ; 13(2): 529-39, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14739333

ABSTRACT

d-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host-bacterium interactions and the establishment of infection. The biosynthesis of d-rhamnose proceeds through the conversion of GDP-d-mannose by GDP-d-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-d-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 A of each other. A short peptide segment (Arg35-Arg43) stretches into the neighboring monomer, making not only protein-protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35-Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35-Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs.


Subject(s)
Guanosine Diphosphate Sugars/biosynthesis , Guanosine Diphosphate Sugars/metabolism , Hydro-Lyases/chemistry , Pseudomonas/enzymology , Amino Acid Sequence , Binding Sites , Catalysis , Crystallization , Crystallography, X-Ray , Hydro-Lyases/metabolism , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL