Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Article in English | MEDLINE | ID: mdl-37563310

ABSTRACT

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Multiple Sclerosis , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Inflammation/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide
3.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693378

ABSTRACT

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Subject(s)
Diabetes Mellitus, Type 2 , Proinsulin , Humans , Proinsulin/genetics , Proinsulin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study/methods , Insulin/genetics , Insulin/metabolism , Glucose , Transcription Factors/genetics , Homeodomain Proteins/genetics
4.
Physiol Rev ; 98(3): 1371-1415, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29767564

ABSTRACT

Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.


Subject(s)
Energy Metabolism , Insulin Resistance , Receptor Cross-Talk , Homeostasis , Humans
5.
Nature ; 576(7785): 51-60, 2019 12.
Article in English | MEDLINE | ID: mdl-31802013

ABSTRACT

Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.


Subject(s)
Diabetes Mellitus, Type 2 , Adipose Tissue/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Eating , Humans , Hyperglycemia , Insulin Resistance , Liver/metabolism
6.
Am J Gastroenterol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38587293

ABSTRACT

INTRODUCTION: This study investigates the applicability of the new metabolic dysfunction-associated steatotic liver disease (MASLD) nomenclature to the real-world TARGET-NASH US adult cohort. METHODS: The new MASLD/metabolic steatohepatitis nomenclature was applied to patients enrolled with pragmatic diagnoses of nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH), and NASH cirrhosis and concordance were determined between the definitions. RESULTS: Approximately 99% of TARGET-NASH participants met the new MASLD diagnostic criteria. Approximately 1,484/1,541 (96.3%, kappa 0.974) nonalcoholic fatty liver patients (metabolic dysfunction-associated steatotic liver), 2,195/2,201 (99.7%, kappa 0.998) NASH patients (metabolic steatohepatitis), and 1,999/2,003 (99.8%, kappa 0.999) NASH cirrhosis patients met the new criteria. DISCUSSION: The new MASLD nomenclature is highly concordant with the previous TARGET-NASH pragmatic definitions.

7.
Hepatology ; 78(6): 1966-1986, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37363821

ABSTRACT

The principal limitations of the terms NAFLD and NASH are the reliance on exclusionary confounder terms and the use of potentially stigmatising language. This study set out to determine if content experts and patient advocates were in favor of a change in nomenclature and/or definition. A modified Delphi process was led by three large pan-national liver associations. The consensus was defined a priori as a supermajority (67%) vote. An independent committee of experts external to the nomenclature process made the final recommendation on the acronym and its diagnostic criteria. A total of 236 panelists from 56 countries participated in 4 online surveys and 2 hybrid meetings. Response rates across the 4 survey rounds were 87%, 83%, 83%, and 78%, respectively. Seventy-four percent of respondents felt that the current nomenclature was sufficiently flawed to consider a name change. The terms "nonalcoholic" and "fatty" were felt to be stigmatising by 61% and 66% of respondents, respectively. Steatotic liver disease was chosen as an overarching term to encompass the various aetiologies of steatosis. The term steatohepatitis was felt to be an important pathophysiological concept that should be retained. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease. There was consensus to change the definition to include the presence of at least 1 of 5 cardiometabolic risk factors. Those with no metabolic parameters and no known cause were deemed to have cryptogenic steatotic liver disease. A new category, outside pure metabolic dysfunction-associated steatotic liver disease, termed metabolic and alcohol related/associated liver disease (MetALD), was selected to describe those with metabolic dysfunction-associated steatotic liver disease, who consume greater amounts of alcohol per week (140-350 g/wk and 210-420 g/wk for females and males, respectively). The new nomenclature and diagnostic criteria are widely supported and nonstigmatising, and can improve awareness and patient identification.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Female , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism , Delphi Technique , Hepatomegaly , Surveys and Questionnaires
8.
Cardiovasc Diabetol ; 23(1): 110, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555466

ABSTRACT

BACKGROUND: The reduction of myocardial infarction (MI) and narrowing the gap between the populations with and without diabetes are important goals of diabetes care. We analyzed time trends for sex-specific incidence rates (IR) of first MI (both non-fatal MI and fatal MI) as well as separately for first non-fatal MI and fatal MI in the population with and without diabetes. METHODS: Using data from the KORA myocardial infarction registry (Augsburg, Germany), we estimated age-adjusted IR in people with and without diabetes, corresponding relative risks (RR), and time trends from 1985 to 2016 using Poisson regression. RESULTS: There were 19,683 people with first MI (34% fatal MI, 71% men, 30% with diabetes) between 1985 and 2016. In the entire study population, the IR of first MI decreased from 359 (95% CI: 345-374) to 236 (226-245) per 100,000 person years. In men with diabetes, IR decreased only in 2013-2016. This was due to first non-fatal MI, where IR in men with diabetes increased until 2009-2012, and slightly decreased in 2013-2016. Overall, fatal MI declined stronger than first non-fatal MI corresponding to IRs. The RR of first MI substantially increased among men from 1.40 (1.22-1.61) in 1985-1988 to 2.60 (2.26-2.99) in 1997-2000 and moderately decreased in 2013-2016: RR: 1.75 (1.47-2.09). Among women no consistent time trend for RR was observed. Time trends for RR were similar regarding first non-fatal MI and fatal MI. CONCLUSIONS: Over the study period, we found a decreased incidence of first MI and fatal MI in the entire study population. The initial increase of first non-fatal MI in men with diabetes needs further research. The gap between populations with and without diabetes remained.


Subject(s)
Diabetes Mellitus , Myocardial Infarction , Male , Humans , Female , Incidence , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Risk , Time , Risk Factors
9.
NMR Biomed ; 37(8): e5120, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38404058

ABSTRACT

Concentrations of the key metabolites of hepatic energy metabolism, adenosine triphosphate (ATP) and inorganic phosphate (Pi), can be altered in metabolic disorders such as diabetes mellitus. 31Phosphorus (31P)-magnetic resonance spectroscopy (MRS) is used to noninvasively measure hepatic metabolites, but measuring their absolute molar concentrations remains challenging. This study employed a 31P-MRS method based on the phantom replacement technique for quantifying hepatic 31P-metabolites on a 3-T clinical scanner. Two surface coils with different size and geometry were used to check for consistency in terms of repeatability and reproducibility and absolute concentrations of metabolites. Day-to-day (n = 8) and intra-day (n = 6) reproducibility was tested in healthy volunteers. In the day-to-day study, mean absolute concentrations of γ-ATP and Pi were 2.32 ± 0.24 and 1.73 ± 0.26 mM (coefficient of variation [CV]: 7.3% and 8.8%) for the single loop, and 2.32 ± 0.42 and 1.73 ± 0.27 mM (CVs 6.7% and 10.6%) for the quadrature coil, respectively. The intra-day study reproducibility using the quadrature coil yielded CVs of 4.7% and 6.8% for γ-ATP and Pi without repositioning, and 6.3% and 7.1% with full repositioning of the volunteer. The results of the day-to-day data did not differ between coils and visits. Both coils robustly yielded similar results for absolute concentrations of hepatic 31P-metabolites. The current method, applied with two different surface coils, can be readily utilized in long-term and interventional studies. In comparison with the single loop coil, the quadrature coil also allows measurements at a greater distance between the coil and liver, which is relevant for studying people with obesity.


Subject(s)
Adenosine Triphosphate , Liver , Magnetic Resonance Spectroscopy , Phosphates , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis , Liver/metabolism , Liver/diagnostic imaging , Reproducibility of Results , Phosphates/metabolism , Magnetic Resonance Spectroscopy/instrumentation , Male , Adult , Female , Phosphorus Isotopes , Phantoms, Imaging
10.
NMR Biomed ; 37(8): e5140, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38556731

ABSTRACT

Maternal obesity and hyperglycemia are linked to an elevated risk for obesity, diabetes, and steatotic liver disease in the adult offspring. To establish and validate a noninvasive workflow for perinatal metabolic phenotyping, fixed neonates of common mouse strains were analyzed postmortem via magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) to assess liver volume and hepatic lipid (HL) content. The key advantage of nondestructive MRI/MRS analysis is the possibility of further tissue analyses, such as immunohistochemistry, RNA extraction, and even proteomics, maximizing the data that can be gained per individual and therefore facilitating comprehensive correlation analyses. This study employed an MRI and 1H-MRS workflow to measure liver volume and HL content in 65 paraformaldehyde-fixed murine neonates at 11.7 T. Liver volume was obtained using semiautomatic segmentation of MRI acquired by a RARE sequence with 0.5-mm slice thickness. HL content was measured by a STEAM sequence, applied with and without water suppression. T1 and T2 relaxation times of lipids and water were measured for respective correction of signal intensity. The HL content, given as CH2/(CH2 + H2O), was calculated, and the intrasession repeatability of the method was tested. The established workflow yielded robust results with a variation of ~3% in repeated measurements for HL content determination. HL content measurements were further validated by correlation analysis with biochemically assessed triglyceride contents (R2 = 0.795) that were measured in littermates. In addition, image quality also allowed quantification of subcutaneous adipose tissue and stomach diameter. The highest HL content was measured in C57Bl/6N (4.2%) and the largest liver volume and stomach diameter in CBA (53.1 mm3 and 6.73 mm) and NMRI (51.4 mm3 and 5.96 mm) neonates, which also had the most subcutaneous adipose tissue. The observed effects were independent of sex and litter size. In conclusion, we have successfully tested and validated a robust MRI/MRS workflow that allows assessment of morphology and HL content and further enables paraformaldehyde-fixed tissue-compatible subsequent analyses in murine neonates.


Subject(s)
Animals, Newborn , Liver , Magnetic Resonance Imaging , Animals , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Mice, Inbred C57BL , Lipids/analysis , Mice , Organ Size , Magnetic Resonance Spectroscopy , Female , Reproducibility of Results , Tissue Fixation , Autopsy , Male
11.
Diabetes Metab Res Rev ; 40(5): e3807, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872492

ABSTRACT

AIMS: The aim of this study was to assess associations between neurological biomarkers and distal sensorimotor polyneuropathy (DSPN). MATERIALS AND METHODS: Cross-sectional analyses were based on 1032 participants aged 61-82 years from the population-based KORA F4 survey, 177 of whom had DSPN at baseline. The prevalence of type 2 diabetes was 20%. Prospective analyses used data from 505 participants without DSPN at baseline, of whom 125 had developed DSPN until the KORA FF4 survey. DSPN was defined based on the examination part of the Michigan Neuropathy Screening Instrument. Serum levels of neurological biomarkers were measured using proximity extension assay technology. Associations between 88 biomarkers and prevalent or incident DSPN were estimated using Poisson regression with robust error variance and are expressed as risk ratios (RR) and 95% CI per 1-SD increase. Results were adjusted for multiple confounders and multiple testing using the Benjamini-Hochberg procedure. RESULTS: Higher serum levels of CTSC (cathepsin C; RR [95% CI] 1.23 (1.08; 1.39), pB-H = 0.044) and PDGFRα (platelet-derived growth factor receptor A; RR [95% CI] 1.21 (1.08; 1.35), pB-H = 0.044) were associated with prevalent DSPN in the total study sample. CDH3, JAM-B, LAYN, RGMA and SCARA5 were positively associated with DSPN in the diabetes subgroup, whereas GCP5 was positively associated with DSPN in people without diabetes (all pB-H for interaction <0.05). None of the biomarkers showed an association with incident DSPN (all pB-H>0.05). CONCLUSIONS: This study identified multiple novel associations between neurological biomarkers and prevalent DSPN, which may be attributable to functions of these proteins in neuroinflammation, neural development and myelination.


Subject(s)
Biomarkers , Humans , Biomarkers/blood , Male , Female , Aged , Cross-Sectional Studies , Middle Aged , Prospective Studies , Aged, 80 and over , Polyneuropathies/blood , Polyneuropathies/epidemiology , Polyneuropathies/diagnosis , Polyneuropathies/etiology , Follow-Up Studies , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/blood , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/etiology , Prognosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/blood , Prevalence
12.
Diabetes Metab Res Rev ; 40(5): e3834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961642

ABSTRACT

AIMS: We recently reported that genetic variability in the TKT gene encoding transketolase, a key enzyme in the pentose phosphate pathway, is associated with measures of diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. Here, we aimed to substantiate these findings in a population-based KORA F4 study. MATERIALS AND METHODS: In this cross-sectional study, we assessed seven single nucleotide polymorphisms (SNPs) in the transketolase gene in 952 participants from the KORA F4 study with normal glucose tolerance (NGT; n = 394), prediabetes (n = 411), and type 2 diabetes (n = 147). DSPN was defined by the examination part of the Michigan Neuropathy Screening Instrument (MNSI) using the original MNSI > 2 cut-off and two alternative versions extended by touch/pressure perception (TPP) (MNSI > 3) and by TPP plus cold perception (MNSI > 4). RESULTS: After adjustment for sex, age, BMI, and HbA1c, in type 2 diabetes participants, four out of seven transketolase SNPs were associated with DSPN for all three MNSI versions (all p ≤ 0.004). The odds ratios of these associations increased with extending the MNSI score, for example, OR (95% CI) for SNP rs62255988 with MNSI > 2: 1.99 (1.16-3.41), MNSI > 3: 2.27 (1.26-4.09), and MNSI > 4: 4.78 (2.22-10.26); SNP rs9284890 with MNSI > 2: 2.43 (1.42-4.16), MNSI > 3: 3.46 (1.82-6.59), and MNSI > 4: 4.75 (2.15-10.51). In contrast, no associations were found between transketolase SNPs and the three MNSI versions in the NGT and prediabetes groups. CONCLUSIONS: The link of genetic variation in transketolase enzyme to diabetic polyneuropathy corroborated at the population level strengthens the concept suggesting an important role of pathways metabolising glycolytic intermediates in the evolution of diabetic polyneuropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Polymorphism, Single Nucleotide , Transketolase , Humans , Transketolase/genetics , Female , Male , Diabetic Neuropathies/genetics , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/etiology , Middle Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , Aged , Genetic Predisposition to Disease , Prediabetic State/genetics , Prediabetic State/complications , Prognosis , Adult , Follow-Up Studies
13.
J Magn Reson Imaging ; 59(4): 1193-1203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37530755

ABSTRACT

BACKGROUND: Water T1 of the liver has been shown to be promising in discriminating the progressive forms of fatty liver diseases, inflammation, and fibrosis, yet proper correction for iron and lipid is required. PURPOSE: To examine the feasibility of an empirical approach for iron and lipid correction when measuring imaging-based T1 and to validate this approach by spectroscopy on in vivo data. STUDY TYPE: Retrospective. POPULATION: Next to mixed lipid-iron phantoms, individuals with different hepatic lipid content were investigated, including people with type 1 diabetes (N = 15, %female = 15.6, age = 43.5 ± 14.0), or type 2 diabetes mellitus (N = 21, %female = 28.9, age = 59.8 ± 9.7) and healthy volunteers (N = 9, %female = 11.1, age = 58.0 ± 8.1). FIELD STRENGTH/SEQUENCES: 3 T, balanced steady-state free precession MOdified Look-Locker Inversion recovery (MOLLI), multi- and dual-echo gradient echo Dixon, gradient echo magnetic resonance elastography (MRE). ASSESSMENT: T1 values were measured in phantoms to determine the respective correction factors. The correction was tested in vivo and validated by proton magnetic resonance spectroscopy (1 H-MRS). The quantification of liver T1 based on automatic segmentation was compared to the T1 values based on manual segmentation. The association of T1 with MRE-derived liver stiffness was evaluated. STATISTICAL TESTS: Bland-Altman plots and intraclass correlation coefficients (ICCs) were used for MOLLI vs. 1 H-MRS agreement and to compare liver T1 values from automatic vs. manual segmentation. Pearson's r correlation coefficients for T1 with hepatic lipids and liver stiffness were determined. A P-value of 0.05 was considered statistically significant. RESULTS: MOLLI T1 values after correction were found in better agreement with the 1 H-MRS-derived water T1 (ICC = 0.60 [0.37; 0.76]) in comparison with the uncorrected T1 values (ICC = 0.18 [-0.09; 0.44]). Automatic quantification yielded similar liver T1 values (ICC = 0.9995 [0.9991; 0.9997]) as with manual segmentation. A significant correlation of T1 with liver stiffness (r = 0.43 [0.11; 0.67]) was found. A marked and significant reduction in the correlation strength of T1 with liver stiffness (r = 0.05 [-0.28; 0.38], P = 0.77) was found after correction for hepatic lipid content. DATA CONCLUSION: Imaging-based correction factors enable accurate estimation of water T1 in vivo. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Diabetes Mellitus, Type 2 , Magnetic Resonance Imaging , Humans , Female , Adult , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Water , Retrospective Studies , Liver/diagnostic imaging , Iron , Reproducibility of Results , Lipids
14.
Liver Int ; 44(1): 27-38, 2024 01.
Article in English | MEDLINE | ID: mdl-37697960

ABSTRACT

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) has been linked to type 2 diabetes (T2D), but also to hypothyroidism. Nevertheless, the relationship between thyroid function and NAFLD in diabetes is less clear. This study investigated associations between free thyroxine (fT4) or thyroid-stimulating hormone (TSH) and NAFLD in recent-onset diabetes. METHODS: Participants with recent-onset type 1 diabetes (T1D, n = 358), T2D (n = 596) or without diabetes (CON, n = 175) of the German Diabetes Study (GDS), a prospective longitudinal cohort study, underwent Botnia clamp tests and assessment of fT4, TSH, fatty liver index (FLI) and in a representative subcohort 1 H-magnetic resonance spectroscopy. RESULTS: First, fT4 levels were similar between T1D and T2D (p = .55), but higher than in CON (T1D: p < .01; T2D: p < .001), while TSH concentrations were not different between all groups. Next, fT4 correlated negatively with FLI and positively with insulin sensitivity only in T2D (ß = -.110, p < .01; ß = .126, p < .05), specifically in males (ß = -.117, p < .05; ß = .162; p < .01) upon adjustments for age, sex and BMI. However, correlations between fT4 and FLI lost statistical significance after adjustment for insulin sensitivity (T2D: ß = -.021, p = 0.67; males with T2D: ß = -.033; p = .56). TSH was associated positively with FLI only in male T2D before (ß = .116, p < .05), but not after adjustments for age and BMI (ß = .052; p = .30). CONCLUSIONS: Steatosis risk correlates with lower thyroid function in T2D, which is mediated by insulin resistance and body mass, specifically in men, whereas no such relationship is present in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Thyroid Gland , Humans , Male , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Longitudinal Studies , Non-alcoholic Fatty Liver Disease/complications , Prospective Studies , Thyroid Gland/physiology , Thyrotropin
15.
Diabetes Obes Metab ; 26(6): 2139-2146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38425176

ABSTRACT

AIMS: To assess the potential for precision medicine in type 2 diabetes by quantifying the variability of body weight as response to pharmacological treatment and to identify predictors which could explain this variability. METHODS: We used randomized clinical trials (RCTs) comparing glucose-lowering drugs (including but not limited to sodium-glucose cotransporter-2 inhibitors, glucagon-like peptide-1 receptor agonists and thiazolidinediones) to placebo from four recent systematic reviews. RCTs reporting on body weight after treatment to allow for calculation of its logarithmic standard deviation (log[SD], i.e., treatment response heterogeneity) in verum (i.e., treatment) and placebo groups were included. Meta-regression analyses were performed with respect to variability of body weight after treatment and potential predictors. RESULTS: A total of 120 RCTs with a total of 43 663 participants were analysed. A slightly larger treatment response heterogeneity was shown in the verum groups, with a median log(SD) of 2.83 compared to 2.79 from placebo. After full adjustment in the meta-regression model, the difference in body weight log(SD) was -0.026 (95% confidence interval -0.044; 0.008), with greater variability in the placebo groups. Scatterplots did not show any slope divergence (i.e., interaction) between clinical predictors and the respective treatment (verum or placebo). CONCLUSIONS: We found no major treatment response heterogeneity in RCTs of glucose-lowering drugs for body weight reduction in type 2 diabetes. The precision medicine approach may thus be of limited value in this setting.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Precision Medicine , Randomized Controlled Trials as Topic , Weight Loss , Diabetes Mellitus, Type 2/drug therapy , Humans , Precision Medicine/methods , Weight Loss/drug effects , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Regression Analysis , Male , Female , Treatment Outcome , Glucagon-Like Peptide-1 Receptor/agonists , Middle Aged , Thiazolidinediones/therapeutic use , Obesity/drug therapy
16.
Diabetes Obes Metab ; 26(1): 339-350, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37869933

ABSTRACT

AIMS: Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice. MATERIALS AND METHODS: Gene expression levels of established beiging markers were measured in scWAT biopsies of humans with (n = 28) or without type 2 diabetes (n = 28), stratified by spiroergometry into low (L-FIT; n = 14 each) and high physical fitness (H-FIT; n = 14 each). High-fat diet-fed FVB/N mice underwent voluntary wheel running, treadmill training or no training (n = 8 each group). Following the training intervention, mitochondrial respiration and content of scWAT were assessed by high-resolution respirometry and citrate synthase activity, respectively. RESULTS: Secreted CD137 antigen (Tnfrsf9/Cd137) expression was three-fold higher in glucose-tolerant H-FIT than in L-FIT, but not different between H-FIT and L-FIT with type 2 diabetes. In mice, both training modalities increased Cd137 expression and enhanced mitochondrial content without changing respiration in scWAT. Treadmill but not voluntary wheel running led to improved whole-body insulin sensitivity. CONCLUSIONS: Higher physical fitness and different exercise interventions associated with higher gene expression levels of the beiging marker CD137 in healthy humans and mice on a high-fat diet. Humans with recent-onset type 2 diabetes show an impaired adipose tissue-specific response to physical activity.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, High-Fat , Humans , Mice , Animals , Motor Activity , Diabetes Mellitus, Type 2/metabolism , Subcutaneous Fat/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue , Physical Fitness , Glucose/metabolism
17.
Diabetes Obes Metab ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010284

ABSTRACT

AIM: To investigate the associations of the Dietary Approaches to Stop Hypertension (DASH) score with subcutaneous (SAT) and visceral (VAT) adipose tissue volume and hepatic lipid content (HLC) in people with diabetes and to examine whether changes in the DASH diet were associated with changes in these outcomes. METHODS: In total, 335 participants with recent-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) from the German Diabetes Study were included in the cross-sectional analysis, and 111 participants in the analysis of changes during the 5-year follow-up. Associations between the DASH score and VAT, SAT and HLC and their changes were investigated using multivariable linear regression models by diabetes type. The proportion mediated by changes in potential mediators was determined using mediation analysis. RESULTS: A higher baseline DASH score was associated with lower HLC, especially in people with T2D (per 5 points: -1.5% [-2.7%; -0.3%]). Over 5 years, a 5-point increase in the DASH score was associated with decreased VAT in people with T2D (-514 [-800; -228] cm3). Similar, but imprecise, associations were observed for VAT changes in people with T1D (-403 [-861; 55] cm3) and for HLC in people with T2D (-1.3% [-2.8%; 0.3%]). Body mass index and waist circumference changes explained 8%-48% of the associations between DASH and VAT changes in both groups. In people with T2D, adipose tissue insulin resistance index (Adipo-IR) changes explained 47% of the association between DASH and HLC changes. CONCLUSIONS: A shift to a DASH-like diet was associated with favourable VAT and HLC changes, which were partly explained by changes in anthropometric measures and Adipo-IR.

18.
Clin Chem Lab Med ; 62(4): 762-769, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37870928

ABSTRACT

OBJECTIVES: Estimates of glucose concentrations vary among types of blood samples, which impact on the assessment of diabetes prevalence. Guidelines recommend a conversion factor to calculate plasma glucose from measurements of glucose in whole blood. The American Diabetes Association recommends the use of blood drawing tubes containing sodium fluoride (NaF) and citrate, which have not yet been evaluated regarding possible differences in glucose concentration and conversion factors. Thus, we compared glucose measurements in NaF-citrate plasma and venous whole blood and estimated the impact of differences on diabetes and prediabetes prevalence. METHODS: Glucose differences were calculated by Bland-Altman analysis with pairwise comparison of glucose measurements from whole blood and NaF-citrate plasma (n=578) in clinical studies of the German Diabetes Center. Subsequently, we computed the impact of the glucose difference on diabetes and prediabetes prevalence in the population-based National Health and Nutrition Examination Survey (NHANES). RESULTS: Even upon conversion of whole blood to plasma glucose concentrations using the recommended conversion factor, mean glucose concentration difference remained 4.72 % higher in NaF-citrate plasma. Applying the higher glucose estimates, increases the population-based diabetes and prediabetes prevalence by 13.67 and 33.97 % or more than 7.2 and 13 million people in NHANES, respectively. Additional economic burden could be about 20 $ billion per year due to undiagnosed diabetes. CONCLUSIONS: The recommended conversion factor is not valid for NaF-citrate plasma. Systematic bias of glucose measurements due to sampling type leads to clinically relevant higher estimates of diabetes and prediabetes prevalence.


Subject(s)
Diabetes Mellitus , Prediabetic State , Humans , Prediabetic State/diagnosis , Prediabetic State/epidemiology , Citric Acid , Sodium Fluoride , Sodium Citrate , Nutrition Surveys , Blood Glucose/analysis , Fluorides , Prevalence , Glycolysis , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Citrates
19.
Nature ; 562(7725): 128-132, 2018 10.
Article in English | MEDLINE | ID: mdl-30258227

ABSTRACT

Angiocrine signals derived from endothelial cells are an important component of intercellular communication and have a key role in organ growth, regeneration and disease1-4. These signals have been identified and studied in multiple organs, including the liver, pancreas, lung, heart, bone, bone marrow, central nervous system, retina and some cancers1-4. Here we use the developing liver as a model organ to study angiocrine signals5,6, and show that the growth rate of the liver correlates both spatially and temporally with blood perfusion to this organ. By manipulating blood flow through the liver vasculature, we demonstrate that vessel perfusion activates ß1 integrin and vascular endothelial growth factor receptor 3 (VEGFR3). Notably, both ß1 integrin and VEGFR3 are strictly required for normal production of hepatocyte growth factor, survival of hepatocytes and liver growth. Ex vivo perfusion of adult mouse liver and in vitro mechanical stretching of human hepatic endothelial cells illustrate that mechanotransduction alone is sufficient to turn on angiocrine signals. When the endothelial cells are mechanically stretched, angiocrine signals trigger in vitro proliferation and survival of primary human hepatocytes. Our findings uncover a signalling pathway in vascular endothelial cells that translates blood perfusion and mechanotransduction into organ growth and maintenance.


Subject(s)
Autocrine Communication , Integrin beta1/metabolism , Liver/growth & development , Liver/physiology , Mechanotransduction, Cellular/physiology , Signal Transduction , Animals , Cells, Cultured , Endothelial Cells/physiology , Female , Hepatocyte Growth Factor/metabolism , Hepatocytes/cytology , Hepatocytes/physiology , Humans , Liver/blood supply , Liver/cytology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Vascular Endothelial Growth Factor Receptor-3/metabolism
20.
Nutr Metab Cardiovasc Dis ; 34(4): 911-924, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418350

ABSTRACT

BACKGROUND AND AIMS: Differences of dietary pattern adherence across the novel diabetes endotypes are unknown. This study assessed adherence to pre-specified dietary patterns and their associations with cardiovascular risk factors, kidney function, and neuropathy among diabetes endotypes. METHODS AND RESULTS: The cross-sectional analysis included 765 individuals with recent-onset (67 %) and prevalent diabetes (33 %) from the German Diabetes Study (GDS) allocated into severe autoimmune diabetes (SAID, 35 %), severe insulin-deficient diabetes (SIDD, 3 %), severe insulin-resistant diabetes (SIRD, 5 %), mild obesity-related diabetes (MOD, 28 %), and mild age-related diabetes (MARD, 29 %). Adherence to a Mediterranean diet score (MDS), Dietary Approaches to Stop Hypertension (DASH) score, overall plant-based diet (PDI), healthful (hPDI) and unhealthful plant-based diet index (uPDI) was derived from a food frequency questionnaire and associated with cardiovascular risk factors, kidney function, and neuropathy using multivariable linear regression analysis. Differences in dietary pattern adherence between endotypes were assessed using generalized mixed models. People with MARD showed the highest, those with SIDD and MOD the lowest adherence to the hPDI. Adherence to the MDS, DASH, overall PDI, and hPDI was inversely associated with high-sensitivity C-reactive protein (hsCRP) among people with MARD (ß (95%CI): -9.18 % (-15.61; -2.26); -13.61 % (-24.17; -1.58); -19.15 % (-34.28; -0.53); -16.10 % (-28.81; -1.12), respectively). Adherence to the PDIs was associated with LDL cholesterol among people with SAID, SIRD, and MOD. CONCLUSIONS: Minor differences in dietary pattern adherence (in particular for hPDI) and associations with markers of diabetes-related complications (e.g. hsCRP) were observed between endotypes. So far, evidence is insufficient to derive endotype-specific dietary recommendations. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01055093.


Subject(s)
Diabetes Mellitus, Type 1 , Diet, Mediterranean , Insulins , Humans , Dietary Patterns , C-Reactive Protein , Cross-Sectional Studies , Diet , Diet, Vegetarian
SELECTION OF CITATIONS
SEARCH DETAIL