Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Biol Chem ; 300(1): 105526, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043797

ABSTRACT

Despite antiretroviral therapy (ART), chronic forms of HIV-associated neurocognitive disorders (HAND) affect an estimated 50% of individuals living with HIV, greatly impacting their quality of life. The prevailing theory of HAND progression posits that chronic inflammation arising from the activation of latent viral reservoirs leads to progressive damage in the central nervous system (CNS). Recent evidence indicates that blood-brain barrier (BBB) pericytes are capable of active HIV-1 infection; however, their latent infection has not been defined. Given their location and function, BBB pericytes are poised to be a key viral reservoir in the development of HAND. We present the first transcriptional analysis of uninfected, active, and latent human BBB pericytes, revealing distinct transcriptional phenotypes. In addition, we demonstrate that latent infection of BBB pericytes relies on AKT signaling for reservoir survival. These findings provide insight into the state of reservoir maintenance in the CNS during HIV-1 infection and provide novel targets for reservoir clearance.


Subject(s)
Blood-Brain Barrier , Disease Reservoirs , HIV Infections , HIV-1 , Latent Infection , Pericytes , Humans , Blood-Brain Barrier/virology , HIV Infections/drug therapy , HIV Infections/transmission , HIV Infections/virology , Latent Infection/virology , Pericytes/virology , Proto-Oncogene Proteins c-akt/genetics , Quality of Life , Virus Latency , Disease Reservoirs/virology
2.
J Clin Invest ; 134(19)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39352383

ABSTRACT

BACKGROUNDAndrogen receptor signaling inhibitors (ARSIs) have improved outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC), but their clinical benefit is limited by treatment resistance.METHODSTo investigate the mechanisms of ARSI resistance, we analyzed the whole-genome (n = 45) and transcriptome (n = 31) sequencing data generated from paired metastatic biopsies obtained before initiation of first-line ARSI therapy for mCRPC and after radiographic disease progression. We investigated the effects of genetic and pharmacologic modulation of SSTR1 in 22Rv1 cells, a representative mCRPC cell line.RESULTSWe confirmed the predominant role of tumor genetic alterations converging on augmenting androgen receptor (AR) signaling and the increased transcriptional heterogeneity and lineage plasticity during the emergence of ARSI resistance. We further identified amplifications involving a putative enhancer downstream of the AR and transcriptional downregulation of SSTR1, encoding somatostatin receptor 1, in ARSI-resistant tumors. We found that patients with SSTR1-low mCRPC tumors derived less benefit from subsequent ARSI therapy in a retrospective cohort. We showed that SSTR1 was antiproliferative in 22Rv1 cells and that the FDA-approved drug pasireotide suppressed 22Rv1 cell proliferation.CONCLUSIONOur findings expand the knowledge of ARSI resistance and point out actionable next steps, exemplified by potentially targeting SSTR1, to improve patient outcomes.FUNDINGNational Cancer Institute (NCI), NIH; Prostate Cancer Foundation; Conquer Cancer, American Society of Clinical Oncology Foundation; UCSF Benioff Initiative for Prostate Cancer Research; Netherlands Cancer Institute.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Signal Transduction , Transcriptome , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Neoplasm Metastasis , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Androgen Receptor Antagonists/pharmacology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
3.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895460

ABSTRACT

Background: Prostate cancer is a heterogenous disease, but once it becomes metastatic it eventually becomes treatment resistant. One mechanism of resistance to AR-targeting therapy is lineage plasticity, where the tumor undergoes a transformation to an AR-indifferent phenotype, most studied in the context of neuroendocrine prostate cancer (NEPC). However, activation of additional de- or trans-differentiation programs, including a gastrointestinal (GI) gene expression program, has been suggested as an alternative method of resistance. In this study, we explored the previously identified GI prostate cancer phenotype (PCa-GI) in a large cohort of metastatic castration-resistant prostate cancer (mCRPC) patient biopsy samples. Methods: We analyzed a dataset of 634 mCRPC samples with batch effect corrected gene expression data from the West Coast Dream Team (WCDT), the East Coast Dream Team (ECDT), the Fred Hutchinson Cancer Research Center (FHCRC) and the Weill Cornell Medical center (WCM). Survival data was available from the WCDT and ECDT cohorts. We calculated a gene expression GI score using the sum of z-scores of genes from a published set of PCa-GI-defining genes (N=38). Survival analysis was performed using the Kaplan-Meier method and Cox proportional hazards regression with endpoint overall survival from time of biopsy to death of any cause. Results: We found that the PCa-GI score had a bimodal distribution, identifying a distinct set of tumors with an activated GI expression pattern. Approximately 35% of samples were classified as PCa-GI high, which was concordant with prior reports. Liver metastases had the highest median score but after excluding liver samples, 29% of the remaining samples were still classified as PCa-GI high, suggesting a distinct phenotype not exclusive to liver metastases. No correlation was observed between GI score and proliferation, AR signaling, or NEPC scores. Furthermore, the PCa-GI score was not associated with genomic alterations in AR, FOXA1, RB1, TP53 or PTEN. However, tumors with MYC amplifications showed significantly higher GI scores (p=0.0001). Patients with PCa-GI tumors had a shorter survival (HR=1.5 [1.1-2.1], p=0.02), but this result was not significant after adjusting for the liver as metastatic site (HR=1.2 [0.82-1.7], p=0.35). Patients with PCa-GI low samples had a better outcome after androgen receptor signaling inhibitors (ASI, abiraterone or enzalutamide) than other therapies (HR=0.37 [0.22-0.61], p=0.0001) while the benefit of ASI was smaller and non-significant for PCa-GI high samples (HR=0.55 [0.29-1.1], p=0.07). A differential pathway analysis identified FOXA2 signaling to be upregulated PCa-GI high tumors (FDR = 3.7 × 10-13). Conclusions: The PCa-GI phenotype is prevalent in clinical mCRPC samples and may represent a distinct biological entity. PCa-GI tumors may respond less to ASI and could offer a strategy to study novel therapeutic targets.

4.
Cancer Res ; 84(18): 3086-3100, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38990734

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) is a lethal disease that resists therapy targeting androgen signaling, the primary driver of prostate cancer. mCRPC resists androgen receptor (AR) inhibitors by amplifying AR signaling or by evolving into therapy-resistant subtypes that do not depend on AR. Elucidation of the epigenetic underpinnings of these subtypes could provide important insights into the drivers of therapy resistance. In this study, we produced chromatin accessibility maps linked to the binding of lineage-specific transcription factors (TF) by performing assay for transposase-accessible chromatin sequencing on 70 mCRPC tissue biopsies integrated with transcriptome and whole-genome sequencing. mCRPC had a distinct global chromatin accessibility profile linked to AR function. Analysis of TF occupancy across accessible chromatin revealed 203 TFs associated with mCRPC subtypes. Notably, ZNF263 was identified as a putative prostate cancer TF with a significant impact on gene activity in the double-negative subtype (AR- neuroendocrine-), potentially activating MYC targets. Overall, this analysis of chromatin accessibility in mCRPC provides valuable insights into epigenetic changes that occur during progression to mCRPC. Significance: Integration of a large cohort of transcriptome, whole-genome, and ATAC sequencing characterizes the chromatin accessibility changes in advanced prostate cancer and identifies therapy-resistant prostate cancer subtype-specific transcription factors that modulate oncogenic programs.


Subject(s)
Chromatin , Disease Progression , Epigenesis, Genetic , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Chromatin/genetics , Chromatin/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Gene Expression Regulation, Neoplastic , Transcription Factors/genetics , Transcription Factors/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
5.
Nat Genet ; 56(8): 1689-1700, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020220

ABSTRACT

The impact of variations in the three-dimensional structure of the genome has been recognized, but solid cancer tissue studies are limited. Here, we performed integrated deep Hi-C sequencing with matched whole-genome sequencing, whole-genome bisulfite sequencing, 5-hydroxymethylcytosine (5hmC) sequencing and RNA sequencing across a cohort of 80 biopsy samples from patients with metastatic castration-resistant prostate cancer. Dramatic differences were present in gene expression, 5-methylcytosine/5hmC methylation and in structural variation versus mutation rate between A and B (open and closed) chromatin compartments. A subset of tumors exhibited depleted regional chromatin contacts at the AR locus, linked to extrachromosomal circular DNA (ecDNA) and worse response to AR signaling inhibitors. We also identified topological subtypes associated with stark differences in methylation structure, gene expression and prognosis. Our data suggested that DNA interactions may predispose to structural variant formation, exemplified by the recurrent TMPRSS2-ERG fusion. This comprehensive integrated sequencing effort represents a unique clinical tumor resource.


Subject(s)
5-Methylcytosine , DNA Methylation , Humans , Male , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Gene Expression Regulation, Neoplastic , Epigenomics/methods , Neoplasm Metastasis/genetics , Genome, Human , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Epigenesis, Genetic , Receptors, Androgen/genetics , Chromatin/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Oncogene Proteins, Fusion/genetics , DNA/genetics , Whole Genome Sequencing , RNA/genetics , Prognosis
6.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: mdl-36992454

ABSTRACT

Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the blood-brain barrier. Despite the low to non-productive viral replication, SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indicator of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Subject(s)
COVID-19 , NF-kappa B , Humans , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Endothelial Cells/metabolism , Post-Acute COVID-19 Syndrome , COVID-19/metabolism , Brain , Blood-Brain Barrier , Mitochondria/metabolism
7.
Cancer Res ; 83(16): 2763-2774, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37289025

ABSTRACT

Systemic targeted therapy in prostate cancer is primarily focused on ablating androgen signaling. Androgen deprivation therapy and second-generation androgen receptor (AR)-targeted therapy selectively favor the development of treatment-resistant subtypes of metastatic castration-resistant prostate cancer (mCRPC), defined by AR and neuroendocrine (NE) markers. Molecular drivers of double-negative (AR-/NE-) mCRPC are poorly defined. In this study, we comprehensively characterized treatment-emergent mCRPC by integrating matched RNA sequencing, whole-genome sequencing, and whole-genome bisulfite sequencing from 210 tumors. AR-/NE- tumors were clinically and molecularly distinct from other mCRPC subtypes, with the shortest survival, amplification of the chromatin remodeler CHD7, and PTEN loss. Methylation changes in CHD7 candidate enhancers were linked to elevated CHD7 expression in AR-/NE+ tumors. Genome-wide methylation analysis nominated Krüppel-like factor 5 (KLF5) as a driver of the AR-/NE- phenotype, and KLF5 activity was linked to RB1 loss. These observations reveal the aggressiveness of AR-/NE- mCRPC and could facilitate the identification of therapeutic targets in this highly aggressive disease. SIGNIFICANCE: Comprehensive characterization of the five subtypes of metastatic castration-resistant prostate cancer identified transcription factors that drive each subtype and showed that the double-negative subtype has the worst prognosis.


Subject(s)
Neuroendocrine Tumors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Epigenomics , Androgen Antagonists/therapeutic use , Androgens , Genomics , Neuroendocrine Tumors/genetics
8.
Cancer Discov ; 12(9): 2017-2019, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36052502

ABSTRACT

SUMMARY: Prostate tumors can develop resistance to androgen receptor (AR)-targeted therapies through treatment-induced changes in transcription factor activity that promote transcriptional and morphologic features of a neuroendocrine lineage. This study identifies an unexpected role for the circadian protein ARNTL in resistance to enzalutamide, a second-generation AR-targeted therapy. See related article by Linder et al., p. 2074 (4).


Subject(s)
Androgens , Prostatic Neoplasms, Castration-Resistant , Aryl Hydrocarbon Receptor Nuclear Translocator , Benzamides , Circadian Rhythm , Drug Resistance, Neoplasm/genetics , Epigenomics , Humans , Male , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
9.
bioRxiv ; 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35734080

ABSTRACT

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non-productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.

10.
Res Sq ; 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35734086

ABSTRACT

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non- productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.

11.
Cancer Res ; 82(21): 3888-3902, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36251389

ABSTRACT

Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.


Subject(s)
5-Methylcytosine , Prostatic Neoplasms , Male , Humans , Prostate , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL