Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 58(5): 2384-2392, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38266236

ABSTRACT

Polychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites. Here we constructed defined microbial consortia comprising various combinations of PCB-dechlorinating Dehalococcoides strains (CG1, CG4, and CG5) to successfully enhance PCB dechlorination. Specifically, the defined consortia consisting of strains CG1 and CG4 removed 0.28-0.44 and 0.23-0.25 more chlorine per PCB from Aroclor1260 and Aroclor1254, respectively, compared to individual strains, which was attributed to the emergence of new PCB dechlorination pathways in defined consortia. Notably, different Dehalococcoides populations exhibited similar growth when cocultivated, but temporal differences in the expression of PCB reductive dehalogenase genes indicated their metabolic synergy. Bioaugmentation with individual strains (CG1, CG4, and CG5) or defined consortia led to greater PCB dechlorination in wetland sediments, and augmentation with the consortium comprising strains CG1 and CG4 resulted in the greatest PCB dechlorination. These findings collectively suggest that simultaneous application of multiple Dehalococcoides strains, which catalyze complementary dechlorination pathways, is an effective strategy to accelerate PCB dechlorination.


Subject(s)
Chloroflexi , Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Dehalococcoides/metabolism , Chloroflexi/genetics , Chloroflexi/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Geologic Sediments/microbiology
2.
Water Res ; 189: 116619, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33232815

ABSTRACT

Wetland ecosystems play an important role in nitrogen cycling, yet the role of anaerobic ammonium oxidation (anammox) in tropical wetlands remains unclear. In the current study the anammox process accounted for 29.8 ~ 57.3% of nitrogen loss in ex situ activity batch tests of microcosms established from anoxic sediments of different tropical wetlands, with the highest activity being 17.95±0.51 nmol-N/g dry sediment/h. This activity was most likely driven by sulfide oxidation with dissimilatory nitrate reduction to ammonium (sulfide-driven DNRA). Microbial community analyses revealed a variety of anammox bacteria related to several known lineages, including Candidatus Anammoximicrobium, Candidatus Brocadia and Candidatus Kuenenia, at different wetlands. Metagenome predictions, batch tests, and isotope-tracing suggested that the high level of anammox activity was due to sulfide-driven DNRA. This was corroborated by a strong correlation (through Pearson's analysis) between the abundance of anammox bacteria and the nrfA (a dissimilatory nitrate reduction to ammonium gene) and dsrA (a sulfate reductase gene) genes, as well as sulfate, ammonium and nitrate concentrations. These correlations suggest syntrophic interactions among sulfate-reducing, sulfide-driven DNRA, and anammox bacterial populations. A better understanding of the role of sulfur in nitrogen loss via the anammox reaction in natural systems could inform development of a viable wastewater treatment strategy that utilizes sulfate to minimize the activity of denitrifying bacteria and thus to reduce nitrous oxide emissions from wastewater treatment plants.


Subject(s)
Ammonium Compounds , Wetlands , Anaerobiosis , Denitrification , Nitrogen , Oxidation-Reduction , Sulfur
SELECTION OF CITATIONS
SEARCH DETAIL