Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell ; 164(5): 922-36, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919429

ABSTRACT

Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel.


Subject(s)
Bacterial Proteins/chemistry , Gammaproteobacteria/metabolism , Voltage-Gated Sodium Channels/chemistry , Amino Acid Sequence , Electron Spin Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Protein Unfolding , Sequence Alignment
2.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 2): 102-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22281738

ABSTRACT

Post-translational modifications involving ubiquitin regulate a wide range of biological processes including protein degradation, responses to DNA damage and immune signalling. Ubiquitin polymerizes into chains which may contain eight different linkage types; the ubiquitin C-terminal glycine can link to one of the seven lysine residues or the N-terminal amino group of methionine in the distal ubiquitin molecule. The latter head-to-tail linkage type, referred to as a linear ubiquitin chain, is involved in NF-κB activation through specific interactions with NF-κB essential modulator (NEMO). Here, a crystal structure of linear diubiquitin at a resolution of 2.2 Šis reported. Although the two ubiquitin moieties do not interact with each other directly, the overall structure adopts a compact but not completely closed conformation with a few intermoiety contacts. This structure differs from the previously reported extended conformation, which resembles Lys63-linked diubiquitin, suggesting that the linear polyubiquitin chain is intrinsically flexible and can adopt multiple conformations.


Subject(s)
Ubiquitins/chemistry , Crystallography, X-Ray , Humans , Lysine/chemistry , Lysine/metabolism , Models, Molecular , NF-kappa B/metabolism , Protein Conformation , Ubiquitins/metabolism
3.
J Gen Physiol ; 154(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35234830

ABSTRACT

Engineered antibody fragments (Fabs) have made major impacts on structural biology research, particularly to aid structural determination of membrane proteins. Nonetheless, Fabs generated by traditional monoclonal technology suffer from challenges of routine production and storage. Starting from the known IgG paratopes of an antibody that binds to the "turret loop" of the KcsA K+ channel, we engineered a synthetic Fab (sFab) based upon the highly stable Herceptin Fab scaffold, which can be recombinantly expressed in Escherichia coli and purified with single-step affinity chromatography. This synthetic Fab was used as a crystallization chaperone to obtain crystals of the KcsA channel that diffracted to a resolution comparable to that from the parent Fab. Furthermore, we show that the turret loop can be grafted into the unrelated voltage-gated Kv1.2-Kv2.1 channel and still strongly bind the engineered sFab, in support of the loop grafting strategy. Macroscopic electrophysiology recordings show that the sFab affects the activation and conductance of the chimeric voltage-gated channel. These results suggest that straightforward engineering of antibodies using recombinant formats can facilitate the rapid and scalable production of Fabs as structural biology tools and functional probes. The impact of this approach is expanded significantly based on the potential portability of the turret loop to a myriad of other K+ channels.


Subject(s)
Potassium Channels, Voltage-Gated , Potassium Channels , Amino Acid Sequence , Immunoglobulin Fragments/metabolism , Potassium Channels/metabolism , Potassium Channels, Voltage-Gated/metabolism
4.
Nat Commun ; 13(1): 1574, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322021

ABSTRACT

C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.


Subject(s)
Bacterial Proteins , Potassium Channels , Bacterial Proteins/metabolism , Crystallography, X-Ray , Potassium Channels/metabolism , Protein Conformation
5.
Nat Struct Mol Biol ; 29(6): 537-548, 2022 06.
Article in English | MEDLINE | ID: mdl-35655098

ABSTRACT

Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins.


Subject(s)
Voltage-Gated Sodium Channels , Molecular Conformation , Molecular Dynamics Simulation , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
6.
J Gen Physiol ; 153(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34357375

ABSTRACT

C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-µs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.


Subject(s)
Ion Channel Gating , Potassium Channels , Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Potassium/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Protein Conformation
7.
Nat Commun ; 12(1): 4028, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188059

ABSTRACT

CNNM/CorB proteins are a broadly conserved family of integral membrane proteins with close to 90,000 protein sequences known. They are associated with Mg2+ transport but it is not known if they mediate transport themselves or regulate other transporters. Here, we determine the crystal structure of an archaeal CorB protein in two conformations (apo and Mg2+-ATP bound). The transmembrane DUF21 domain exists in an inward-facing conformation with a Mg2+ ion coordinated by a conserved π-helix. In the absence of Mg2+-ATP, the CBS-pair domain adopts an elongated dimeric configuration with previously unobserved domain-domain contacts. Hydrogen-deuterium exchange mass spectrometry, analytical ultracentrifugation, and molecular dynamics experiments support a role of the structural rearrangements in mediating Mg2+-ATP sensing. Lastly, we use an in vitro, liposome-based assay to demonstrate direct Mg2+ transport by CorB proteins. These structural and functional insights provide a framework for understanding function of CNNMs in Mg2+ transport and associated diseases.


Subject(s)
Cation Transport Proteins/metabolism , Hydrogenophilaceae/metabolism , Magnesium/metabolism , Methanomicrobiaceae/metabolism , Amino Acid Sequence , Cation Transport Proteins/genetics , Crystallography, X-Ray , Deuterium Exchange Measurement , Molecular Dynamics Simulation , Protein Conformation , Protein Domains
8.
Data Brief ; 32: 106135, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32904340

ABSTRACT

Barium is a potent blocker of the KcsA potassium channel. A strategy using x-ray crystallography and molecular dynamics (MD) simulation has been used to understand this phenomenon as described in Rohaim et al. [1]. Wild type KcsA is purified to homogeneity and crystallized in low and high K+ conditions. Crystals are grown using the hanging drop vapor diffusion method. To examine barium binding in the selectivity filter of KcsA, the crystals are systemically soaked in various concentrations of barium chloride solution. X-ray crystallography datasets are collected at the Advanced Photon Source. A total of 10 datasets are collected for various barium ion concentrations. Diffraction data are processed using the crystallography pipeline software RAPID. The crystal structures are solved by molecular replacement methods. The structure models are visualized using COOT and refined using REFMAC. Anomalous map coefficients are calculated using the phenix.maps tool in the PHENIX software suite. The datasets are deposited in the Protein Data Bank. The data provides a detailed picture of barium ion interaction with potassium channels. Structural analysis of the KcsA channel reveals two distinct configurations, open- and closed- state. Further MD simulation analysis suggests an energetically favorable binding mechanism for barium ion in the selectivity filter. The data could be used to interpret functional experiments related to barium blockade for potassium channels. Also, it is valuable for comparison and cross validation with other relevant potassium channel structures.

9.
J Mol Biol ; 432(17): 4783-4798, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32615129

ABSTRACT

Barium (Ba2+) is a classic permeant blocker of potassium (K+) channels. The "external lock-in effect" in barium block experiments, whereby the binding of external K+ impedes the forward translocation of the blocker, provides a powerful avenue to investigate the selectivity of the binding sites along the pore of potassium channels. Barium block experiments show that the external lock-in site is highly selective for K+ over Na+. Wild-type KcsA was crystallized in low K+ conditions, and the crystals were soaked in solutions containing various concentrations of barium. Structural analysis reveals open and closed gate conformations of the KcsA channel. Anomalous diffraction experiments show that Ba2+ primarily binds to the innermost site S4 of the selectivity filter of the open-gate conformation and also the site S2, but no binding is detected with the closed-gate conformation. Alchemical free-energy perturbation calculations indicate that the presence of a Ba2+ ion in the selectivity filter boosts the specificity of K+ binding relative to Na+ in the external sites S0-S2.


Subject(s)
Barium/chemistry , Barium/pharmacology , Potassium Channels/chemistry , Potassium Channels/metabolism , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
10.
FEBS J ; 283(11): 2004-17, 2016 06.
Article in English | MEDLINE | ID: mdl-27062441

ABSTRACT

UNLABELLED: The ubiquitin-binding zinc finger (UBZ) is a type of zinc-coordinating ß-ß-α fold domain found mainly in proteins involved in DNA repair and transcriptional regulation. Here, we report the crystal structure of the UBZ domain of Y-family DNA polymerase (pol) η and the crystal structure of the complex between the UBZ domain of Werner helicase-interacting protein 1 (WRNIP1) and ubiquitin, crystallized using the GFP fusion technique. In contrast to the pol η UBZ, which has been proposed to bind ubiquitin via its C-terminal α-helix, ubiquitin binds to a novel surface of WRNIP1 UBZ composed of the first ß-strand and the C-terminal α-helix. In addition, we report the structure of the tandem UBZ domains of Tax1-binding protein 1 (TAX1BP1) and show that the second UBZ of TAX1BP1 binds ubiquitin, presumably in a manner similar to that of WRNIP1 UBZ. We propose that UBZ domains can be divided into at least two different types in terms of the ubiquitin-binding surfaces: the pol η type and the WRNIP1 type. DATABASE: Structural data are available in the Protein Data Bank under accession numbers 3WUP (pol η UBZ), 3VHS (WRNIP1 UBZ), 3VHT (GFP-WRNIP1/ubiquitin), 4Z4K (TAX1BP1 UBZ1 + 2), and 4Z4M (TAX1BP1 UBZ2).


Subject(s)
Carrier Proteins/chemistry , DNA-Binding Proteins/chemistry , Ubiquitin/chemistry , ATPases Associated with Diverse Cellular Activities , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Protein Binding/genetics , Protein Conformation, alpha-Helical , Protein Folding , Ubiquitin/genetics , Ubiquitin/metabolism , Zinc Fingers/genetics
11.
Nat Commun ; 7: 12753, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27678077

ABSTRACT

The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

12.
Technol Health Care ; 19(6): 455-67, 2011.
Article in English | MEDLINE | ID: mdl-22129946

ABSTRACT

In this work the retardation of Ehrlich tumor growth implanted in mice was studied by employing 4.5 Hz magnetic field. Eighty female Balb/c mice were used, twenty as normal group; the other sixty mice were inoculated with Ehrlich tumor, then they were divided equally into three groups namely A, B and C. Group A (control group) animals were not exposed to the magnetic field. The tumors in the thigh of the animals of group B were exposed to 4.5 Hz, 2 Gauss square wave magnetic field by using a small solenoid connected to a power square wave generator. Group C animals were whole body exposed inside a large solenoid to 4.5 Hz, 2 Gauss square wave magnetic field. Both groups B and C were exposed for a period of 2 weeks at a rate 2 hours per day. Tumor volume, survival period, histological examination and dielectric relaxation of the tumor were measured to investigate the activity of the tumor of the exposed and the unexposed animals. The results indicated that exposing the tumor tissue to 4.5 Hz square wave magnetic field for 2 weeks at a rate 2 hours/day inhibited tumor growth and increased the survival period of the animals. However, group B showed more improvements than did group C. This was attributed to some distortions in the square waveform in the large solenoid (group C). By comparing data from current and previous work, it was concluded that the use of magnetic waves showed better results over previously published work using amplitude modulated electromagnetic waves with the same frequency.


Subject(s)
Carcinoma, Ehrlich Tumor/radiotherapy , Magnetic Field Therapy/methods , Animals , Carcinoma, Ehrlich Tumor/pathology , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL