Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Geohealth ; 8(2): e2023GH000937, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344245

ABSTRACT

To understand how chemical exposure can impact health, researchers need tools that capture the complexities of personal chemical exposure. In practice, fine particulate matter (PM2.5) air quality index (AQI) data from outdoor stationary monitors and Hazard Mapping System (HMS) smoke density data from satellites are often used as proxies for personal chemical exposure, but do not capture total chemical exposure. Silicone wristbands can quantify more individualized exposure data than stationary air monitors or smoke satellites. However, it is not understood how these proxy measurements compare to chemical data measured from wristbands. In this study, participants wore daily wristbands, carried a phone that recorded locations, and answered daily questionnaires for a 7-day period in multiple seasons. We gathered publicly available daily PM2.5 AQI data and HMS data. We analyzed wristbands for 94 organic chemicals, including 53 polycyclic aromatic hydrocarbons. Wristband chemical detections and concentrations, behavioral variables (e.g., time spent indoors), and environmental conditions (e.g., PM2.5 AQI) significantly differed between seasons. Machine learning models were fit to predict personal chemical exposure using PM2.5 AQI only, HMS only, and a multivariate feature set including PM2.5 AQI, HMS, and other environmental and behavioral information. On average, the multivariate models increased predictive accuracy by approximately 70% compared to either the AQI model or the HMS model for all chemicals modeled. This study provides evidence that PM2.5 AQI data alone or HMS data alone is insufficient to explain personal chemical exposures. Our results identify additional key predictors of personal chemical exposure.

2.
Pac Symp Biocomput ; 29: 170-186, 2024.
Article in English | MEDLINE | ID: mdl-38160278

ABSTRACT

Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.


Subject(s)
Environmental Monitoring , Wearable Electronic Devices , Humans , Computational Biology , Data Analysis , Environmental Monitoring/methods , Silicones/chemistry
3.
J Expo Sci Environ Epidemiol ; 34(4): 679-687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38177333

ABSTRACT

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive environmental pollutants with a variety of known health effects. While significant work has been completed to estimate personal exposure to PAHs, less has been done to identify sources of these exposures. Comprehensive characterization of reported sources of personal PAH exposure is a critical step to more easily identify individuals at risk of high levels of exposure and for developing targeted interventions based on source of exposure. OBJECTIVE: In this study, we leverage data from a New York (NY)-based birth cohort to identify personal characteristics or behaviors associated with personal PAH exposure and develop models for the prediction of PAH exposure. METHODS: We quantified 61 PAHs measured using silicone wristband samplers in association with 75 questionnaire variables from 177 pregnant individuals. We evaluated univariate associations between each compound and questionnaire variable, conducted regression tree analysis for each PAH compound and completed a principal component analysis of for each participant's entire PAH exposure profile to determine the predictors of PAH levels. RESULTS: Regression tree analyses of individual compounds and exposure mixture identified income, time spent outdoors, maternal age, country of birth, transportation type, and season as the variables most frequently predictive of exposure.


Subject(s)
Environmental Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Surveys and Questionnaires , Female , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Exposure/analysis , Adult , Pregnancy , Environmental Pollutants/analysis , Environmental Monitoring/methods , New York , Young Adult , Cohort Studies , Wrist , Principal Component Analysis
4.
Environ Health Insights ; 18: 11786302241262604, 2024.
Article in English | MEDLINE | ID: mdl-39055113

ABSTRACT

Report-back of research results (RBRR) is becoming standard practice for environmental health research studies. RBRR is thought to increase environmental health literacy (EHL), although standardized measurements are limited. For this study, we developed a report back document on exposure to air pollutants, Polycyclic Aromatic Hydrocarbons, during pregnancy through community engaged research and evaluated whether the report increased EHL. We used focus groups and surveys to gather feedback on the report document from an initial group of study participants (Group 1, n = 22) and then sent the revised report to a larger number of participants (Group 2, n = 168). We conducted focus groups among participants in Group 1 and discussed their suggested changes to the report and how those changes could be implemented. Participants in focus groups demonstrated multiple levels of EHL. While participant engagement critically informed report development, a survey comparing feedback from Group 1 (initial report) and Group 2 (revised report) did not show a significant difference in the ease of reading the report or knowledge gained about air pollutants. We acknowledge that our approach was limited by a lack of EHL tools that assess knowledge and behavior change, and a reliance on quantitative methodologies. Future approaches that merge qualitative and quantitative methodologies to evaluate RBRR and methodologies for assessing RBRR materials and subsequent changes in knowledge, attitudes, and behavior, may be necessary.

SELECTION OF CITATIONS
SEARCH DETAIL