Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Immunol ; 259: 109877, 2024 02.
Article in English | MEDLINE | ID: mdl-38141746

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.


Subject(s)
COVID-19 , Connective Tissue Diseases , Systemic Inflammatory Response Syndrome , Humans , Child , SARS-CoV-2 , Cytokines , Immunoglobulin G , Fever , Antibodies, Viral
2.
J Antimicrob Chemother ; 79(2): 280-286, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38101948

ABSTRACT

BACKGROUND: Tuberculous meningitis (TBM) is the most lethal form of TB. To study the disease, drug concentrations in samples obtained from the spinal CSF are usually used to reflect brain concentrations. Emerging data suggest that transport of substances across capillaries in the brain (ventricular CSF) and spinal cord may differ. METHODS: We examined paired, time-linked samples of ventricular CSF (VCSF) and lumbar CSF (LCSF) of 28 patients with TBM and analysed these for rifampicin and total protein concentrations. Clinically indicated samples from procedures to determine the level of CSF block were collected from children being treated for TBM and hydrocephalus. Total protein concentrations were determined using the bicinchoninic acid (BCA) or turbidimetry assay, and rifampicin concentrations were determined using a validated LC coupled with tandem MS method. A paired Wilcoxon signed-rank test was used to determine significance. RESULTS: TBM was confirmed in 19 cases (68%) using TB culture or GeneXpert Mtb/Rifampicin assay. All other cases were classified as probable. The median total protein concentration in LCSF was 6.0 g/L and in VCSF was 1.3 g/L. The median rifampicin concentration in LCSF was 299 ng/mL and 133 ng/mL in VCSF. The median ratio of LCSF/VSCF for protein was 4.23 and 1.57 for rifampicin. CONCLUSIONS: Total protein and rifampicin concentrations differed significantly between the two compartments, both being higher in LCSF than in VCSF samples (P < 0.0001 for total protein and P = 0.0046 for rifampicin). Further studies are required to explore the causative reasons for the observed differences.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Child , Humans , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Rifampin/therapeutic use , Cerebrospinal Fluid
3.
Antimicrob Agents Chemother ; 67(3): e0147422, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36815838

ABSTRACT

Limited knowledge is available on the pharmacokinetics of rifampicin in children with tuberculous meningitis (TBM) and its penetration into brain tissue, which is the site of infection. In this analysis, we characterize the distribution of rifampicin in cerebrospinal fluid (CSF), lumbar (LCSF) and ventricular (VCSF), and brain extracellular fluid (ECF). Children with TBM were included in this pharmacokinetic analysis. Sparse plasma, LCSF, and VCSF samples were collected opportunistically, as clinically indicated. Brain ECF was sampled using microdialysis (MD). Rifampicin was quantified with liquid chromatography with tandem mass spectrometry in all samples, and 25-desacetyl rifampicin in the plasma samples. The data were interpreted with nonlinear mixed-effects modeling, with the CSF and brain ECF modeled as "effect compartments." Data were available from 61 children, with median (min-max) age of 2 (0.3 to 10) years and weight of 11.0 (4.8 to 49.0) kg. A one-compartment model for parent and metabolite with first-order absorption and elimination via saturable hepatic clearance described the data well. Allometric scaling, maturation, and auto-induction of clearance were included. The pseudopartition coefficient between plasma and LCSF/VCSF was ~5%, while the value for ECF was only ~0.5%, possibly reflecting low recovery of rifampicin using MD. The equilibration half-life between plasma and LCSF/VCSF was ~4 h and between plasma and ECF ~2 h. Our study confirms previous reports showing that rifampicin concentrations in the LCSF are lower than in plasma and provides novel knowledge about rifampicin in the VCSF and the brain tissue. Despite MD being semiquantitative because the relative recovery cannot be quantified, our study presents a proof-of-concept that rifampicin reaches the brain tissue and that MD is an attractive technique to study site-of-disease pharmacokinetics in TBM.


Subject(s)
Extracellular Fluid , Tuberculosis, Meningeal , Humans , Child , Child, Preschool , Rifampin , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/metabolism , South Africa , Brain/metabolism
4.
Crit Care Med ; 51(5): 573-583, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36790173

ABSTRACT

OBJECTIVES: To examine cerebrovascular pressure reactivity index (PRx) in a large cohort of children with severe traumatic brain injury (sTBI) in association with physiologic variables and outcome. DESIGN: Retrospective observational cohort study. SETTING: Red Cross War Memorial Children's Hospital in Cape Town, South Africa. PATIENTS: Pediatric (≤ 14 yr old) sTBI patients with intracranial pressure (ICP) monitoring (postresuscitation Glasgow Coma Score [Glasgow Coma Scale (GCS)] of ≤ 8). MEASUREMENTS AND MAIN RESULTS: Data were analyzed from ICM+ files sampled at 100Hz. PRx (a mathematical indicator of pressure reactivity) was calculated as a moving correlation coefficient between ICP and mean arterial pressure (MAP) as previously described. Associations between PRx, age, GCS, ICP, MAP, and cerebral perfusion pressure (CPP) were examined with summary measures and correlation analysis using high-frequency data. Associations between PRx and mortality/outcome were examined with multivariable logistic regression analysis and the prognostic ability of PRx with receiver operating characteristic (ROCs) curves. The dataset included over 1.7 million minutes (28,634 hr) of MAP and ICP data in 196 children. The series mortality was 10.7% (21/196), and unfavorable outcome 29.6% (58/196). PRx had a moderate positive correlation with ICP ( r = 0.44; p < 0.001), a moderate negative correlation with CPP ( r = -0.43; p < 0.001), and a weak negative correlation with MAP ( r = -0.21; p = 0.004). PRx was consistently higher in patients with poor outcome and had a strong, independent association with mortality (ROC area under the curve = 0.91). A PRx threshold of 0.25 showed the best predictive ability for mortality. CONCLUSIONS: This is the largest cohort of children with PRx analysis of cerebrovascular reactivity to date. PRx had a strong association with outcome that was independent of ICP, CPP, GCS, and age. The data suggest that impaired autoregulation is an independent factor associated with poor outcome and may be useful in directing clinical care.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Child , Retrospective Studies , Intracranial Pressure/physiology , South Africa , Cerebrovascular Circulation/physiology
5.
Childs Nerv Syst ; 37(5): 1713-1721, 2021 05.
Article in English | MEDLINE | ID: mdl-33585956

ABSTRACT

PURPOSE: A better understanding of the complex pathophysiology of traumatic brain injury (TBI) is needed to improve our current therapies. Cerebral microdialysis (CMD) is an advanced method to monitor the brain, but little is known about its parameters in children. Brain glycerol, one of the CMD variables, is an essential component of the phospholipid bilayer cell membrane and is considered a useful marker of tissue hypoxia in adults. This study examined the time course of glycerol and its associations in paediatric TBI. METHODS: In this retrospective cohort study, we collected data on children (< 13years) with severe TBI who underwent CMD monitoring. The relationship of glycerol was examined with respect to physiological, radiological variables, and clinical outcome. RESULTS: Twenty-eight children underwent CMD monitoring and had evaluable data. Lesion progression on head computed tomography (CT) demonstrated a strong relationship with glycerol (median glycerol, maximum and initial-to-maximum) when lesion size increased by > 30% (p=0.01, p=0.04 and p=0.004). Absolute glycerol values had a weak but statistically significant association with intracranial pressure and brain oxygenation. We did not find an association with clinical outcome. CONCLUSION: This is the first study to provide data on brain interstitial glycerol in children. CMD glycerol, particularly an increase from baseline, is associated with other markers of injury and with a significant increase in lesion size on repeat head CT. As such, it may represent a useful monitorable marker for evolving injury in paediatric TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adult , Brain/diagnostic imaging , Brain Injuries/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Child , Glycerol , Humans , Retrospective Studies
6.
Int J Mol Sci ; 20(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889803

ABSTRACT

Tuberculosis (TB) remains the single biggest infectious cause of death globally, claiming almost two million lives and causing disease in over 10 million individuals annually. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes with various physiological roles implicated as key factors contributing to the spread of TB. They are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis bacilli into the airways. Evidence demonstrates that MMPs also play a role in central nervous system (CNS) tuberculosis, as they contribute to the breakdown of the blood brain barrier and are associated with poor outcome in adults with tuberculous meningitis (TBM). However, in pediatric TBM, data indicate that MMPs may play a role in both pathology and recovery of the developing brain. MMPs also have a significant role in HIV-TB-associated immune reconstitution inflammatory syndrome in the lungs and the brain, and their modulation offers potential novel therapeutic avenues. This is a review of recent research on MMPs in pulmonary and CNS TB in adults and children and in the context of co-infection with HIV. We summarize different methods of MMP investigation and discuss the translational implications of MMP inhibition to reduce immunopathology.


Subject(s)
Matrix Metalloproteinases/metabolism , Tuberculosis, Central Nervous System/enzymology , Tuberculosis, Pulmonary/enzymology , Biomarkers/metabolism , Humans , Models, Biological , Tuberculosis, Central Nervous System/therapy , Tuberculosis, Meningeal/enzymology , Tuberculosis, Meningeal/therapy , Tuberculosis, Pulmonary/therapy
7.
Clin Infect Dis ; 65(8): 1298-1307, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28605426

ABSTRACT

Background: Tuberculous meningitis (TBM) leads to death or disability in half the affected individuals. Tools to assess severity and predict outcome are lacking. Neurospecific biomarkers could serve as markers of the severity and evolution of brain injury, but have not been widely explored in TBM. We examined biomarkers of neurological injury (neuromarkers) and inflammation in pediatric TBM and their association with outcome. Methods: Blood and cerebrospinal fluid (CSF) of children with TBM and hydrocephalus taken on admission and over 3 weeks were analyzed for the neuromarkers S100B, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP), in addition to multiple inflammatory markers. Results were compared with 2 control groups: patients with (1) a fatty filum (abnormal filum terminale of the spinal cord); and (2) pulmonary tuberculosis (PTB). Imaging was conducted on admission and at 3 weeks. Outcome was assessed at 6 months. Results: Data were collected from 44 patients with TBM (cases; median age, 3.3 [min-max 0.3-13.1] years), 11 fatty filum controls (median age, 2.8 [min-max 0.8-8] years) and 9 PTB controls (median age, 3.7 [min-max 1.3-11.8] years). Seven cases (16%) died and 16 (36%) had disabilities. Neuromarkers and inflammatory markers were elevated in CSF on admission and for up to 3 weeks, but not in serum. Initial and highest concentrations in week 1 of S100B and NSE were associated with poor outcome, as were highest concentration overall and an increasing profile over time in S100B, NSE, and GFAP. Combined neuromarker concentrations increased over time in patients who died, whereas inflammatory markers decreased. Cerebral infarcts were associated with highest overall neuromarker concentrations and an increasing profile over time. Tuberculomas were associated with elevated interleukin (IL) 12p40, interferon-inducible protein 10, and monocyte chemoattractant protein 1 concentrations, whereas infarcts were associated with elevated tumor necrosis factor α, macrophage inflammatory protein 1α, IL-6, and IL-8. Conclusions: CSF neuromarkers are promising biomarkers of injury severity and are predictive of mortality. An increasing trend suggested ongoing brain injury, even though markers of inflammation declined with treatment. These findings could offer novel insight into the pathophysiology of TBM.


Subject(s)
Biomarkers , Cerebral Infarction , Hydrocephalus , Inflammation , Tuberculosis, Meningeal , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Cerebral Infarction/blood , Cerebral Infarction/cerebrospinal fluid , Cerebral Infarction/microbiology , Child, Preschool , Female , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Humans , Hydrocephalus/blood , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/microbiology , Infant , Infant, Newborn , Inflammation/blood , Inflammation/cerebrospinal fluid , Inflammation/microbiology , Male , Phosphopyruvate Hydratase/blood , Phosphopyruvate Hydratase/cerebrospinal fluid , Prospective Studies , S100 Calcium Binding Protein beta Subunit/blood , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , Tuberculosis, Meningeal/blood , Tuberculosis, Meningeal/cerebrospinal fluid , Tuberculosis, Meningeal/complications , Tuberculosis, Meningeal/epidemiology
8.
Clin Infect Dis ; 64(4): 501-509, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28172588

ABSTRACT

Tuberculous meningitis (TBM) remains a major cause of death and disability in tuberculosis-endemic areas, especially in young children and immunocompromised adults. Research aimed at improving outcomes is hampered by poor standardization, which limits study comparison and the generalizability of results. We propose standardized methods for the conduct of TBM clinical research that were drafted at an international tuberculous meningitis research meeting organized by the Oxford University Clinical Research Unit in Vietnam. We propose a core dataset including demographic and clinical information to be collected at study enrollment, important aspects related to patient management and monitoring, and standardized reporting of patient outcomes. The criteria proposed for the conduct of observational and intervention TBM studies should improve the quality of future research outputs, can facilitate multicenter studies and meta-analyses of pooled data, and could provide the foundation for a global TBM data repository.


Subject(s)
Biomedical Research , Quality of Health Care , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/therapy , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Biomedical Research/methods , Biomedical Research/standards , Clinical Studies as Topic/methods , Clinical Studies as Topic/standards , Data Collection , Disease Management , Humans , Mycobacterium tuberculosis , Outcome Assessment, Health Care , Tuberculosis, Meningeal/epidemiology
9.
Childs Nerv Syst ; 33(10): 1651-1661, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808845

ABSTRACT

In recent years, much progress has been made in our understanding of traumatic brain injury (TBI). Clinical outcomes have progressively improved, but evidence-based guidelines for how we manage patients remain surprisingly weak. The problem is that the many interventions and strategies that have been investigated in randomized controlled trials have all disappointed. These include many concepts that had become standard care in TBI. And that is just for adult TBI; in children, the situation is even worse. Not only is pediatric care more difficult than adult care because physiological norms change with age, but also there is less evidence for clinical practice. In this article, we discuss the heterogeneity inherent in TBI and why so many clinical trials have failed. We submit that a key goal for the future is to appreciate important clinical differences between patients in their pathophysiology and their responses to treatment. The challenge that faces us is how to rationally apply therapies based on the specific needs of an individual patient. In doing so, we may be able to apply the principles of precision medicine approaches to the patients we treat.


Subject(s)
Aging , Brain Injuries, Traumatic/therapy , Precision Medicine/methods , Brain Injuries, Traumatic/physiopathology , Humans
10.
Dev Med Child Neurol ; 58(5): 461-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26888419

ABSTRACT

AIM: Tuberculous meningitis (TBM) is a lethal and commonly occurring form of extra-pulmonary tuberculosis in children, often complicated by hydrocephalus which worsens outcome. Despite high mortality and morbidity, little data on the impact on neurodevelopment exists. We examined the clinical characteristics, and clinical and neurodevelopmental outcomes of TBM and hydrocephalus. METHOD: Demographic and clinical data (laboratory and radiological findings) were prospectively collected on children treated for probable and definite TBM with hydrocephalus. At 6 months, clinical outcome was assessed using the Paediatric Cerebral Performance Category Scale and neurodevelopmental outcome was assessed with the Griffiths Mental Development Scale - Extended Version. RESULTS: Forty-four patients (median age 3y 3mo, range 3mo-13y 1mo, [SD 3y 5mo]) were enrolled. The mortality rate was 16%, three patients (6.8%) were in a persistent vegetative state, two were severely disabled (4.5%), and 11 (25%) suffered mild-moderate disability. All cases demonstrated neurodevelopmental deficits relative to controls. Multiple or large infarcts were prognostic of poor outcome. INTERPRETATION: Neurological and neurodevelopmental deficits are common after paediatric TBM with hydrocephalus, and appear to be related to ongoing cerebral ischaemia and consequent infarction. The impact of TBM on these children is multidimensional and presents short- and long-term challenges.


Subject(s)
Hydrocephalus/complications , Nervous System Diseases/etiology , Neurodevelopmental Disorders/etiology , Outcome Assessment, Health Care , Tuberculosis, Meningeal/complications , Adolescent , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Nervous System Diseases/physiopathology , Neurodevelopmental Disorders/physiopathology , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/mortality
11.
Clin Chem ; 60(6): 823-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24170612

ABSTRACT

BACKGROUND: Central nervous system (CNS) infections present a major burden of disease worldwide and are associated with high rates of mortality and morbidity. Swift diagnosis and initiation of appropriate treatment are vital to minimize the risk of poor outcome; however, tools are lacking to accurately diagnose infection, assess injury severity, and predict outcome. Biomarkers of structural neurological injury could provide valuable information in addressing some of these challenges. CONTENT: In this review, we summarize experimental and clinical research on biomarkers of neurological injury in a range of CNS infectious diseases. Data suggest that in both adults and children, the biomarkers S100B and neuron-specific enlose (NSE), among others, can provide insight into the pathophysiology of CNS infection and injury severity, evolution, and response to treatment. Research into the added utility of combining a panel of biomarkers and in assessing biomarker association with clinical and radiological outcomes warrants further work. Various factors, including age, the establishment of normative values, and comparison of biomarker concentrations across different testing platforms still present challenges in biomarker application. SUMMARY: Research regarding the value of biomarkers in CNS infections is still in its infancy. However, early evidence supports their utility in diagnosis and prognosis, and potentially as effective surrogate end points in the assessment of novel interventions.


Subject(s)
Brain Injuries/diagnosis , Central Nervous System Infections/diagnosis , S100 Calcium Binding Protein beta Subunit/analysis , Biomarkers/analysis , Humans
12.
J Cereb Blood Flow Metab ; 44(7): 1063-1077, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546534

ABSTRACT

Metabolomic analysis of cerebrospinal fluid (CSF) is used to improve diagnostics and pathophysiological understanding of neurological diseases. Alterations in CSF metabolite levels can partly be attributed to changes in brain metabolism, but relevant transport processes influencing CSF metabolite concentrations should be considered. The entry of molecules including metabolites into the central nervous system (CNS), is tightly controlled by the blood-brain, blood-CSF, and blood-spinal cord barriers, where aquaporins and membrane-bound carrier proteins regulate influx and efflux via passive and active transport processes. This report therefore provides reference for future CSF metabolomic work, by providing a detailed summary of the current knowledge on the location and function of the involved transporters and routing of metabolites from blood to CSF and from CSF to blood.


Subject(s)
Blood-Brain Barrier , Humans , Blood-Brain Barrier/metabolism , Biological Transport/physiology , Animals , Central Nervous System/metabolism , Cerebrospinal Fluid/metabolism , Metabolomics/methods , Membrane Transport Proteins/metabolism , Aquaporins/metabolism
13.
Sci Rep ; 14(1): 2463, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291295

ABSTRACT

The pauci-cellular nature of cerebrospinal (CSF), particularly ventricular CSF, and the rapid cell death following sampling, incumbers the use of flow cytometric analysis of these samples in the investigation of central nervous system (CNS) pathologies. Developing a method that allows long-term storage and batched analysis of CSF samples without compromising cell integrity is highly desirable in clinical research, given that CSF is often sampled after hours creating logistical difficulties for fresh processing. We examined percentages and relative proportion of peripheral and brain-derived immune cells in cryopreserved and transfix-treated CSF, compared to freshly processed CSF. Cell proportions were more comparable between Fresh and Cryopreserved CSF (mean of differences = 3.19), than between fresh and transfix-treated CSF (mean of differences = 14.82). No significant differences in cell percentages were observed in fresh versus cryopreserved CSF; however significantly lower cell percentages were observed in transfix-treated CSF compared to Fresh CSF [(CD11b++ (p = 0.01), CD4+ (p = 0.001), CD8+ (p = 0.007), NK cells (p = 0.04), as well as CD69+ activation marker (p = 0.001)]. Furthermore, loss of marker expression of various lymphocyte sub-populations were observed in transfix-treated CSF. Cryopreservation is a feasible option for long-term storage of ventricular CSF and allows accurate immunophenotyping of peripheral and brain-derived cell populations by flow cytometry.


Subject(s)
Central Nervous System , Lymphocyte Subsets , Flow Cytometry/methods , Immunophenotyping , Cryopreservation/methods , Cerebrospinal Fluid
14.
Clin Infect Dis ; 67(4): 643-644, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29617961
15.
Front Neurol ; 14: 822575, 2023.
Article in English | MEDLINE | ID: mdl-36864913

ABSTRACT

Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.

16.
bioRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808657

ABSTRACT

The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. To date, studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-Sseq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 54 cell subtypes, which we verify with spatial transcriptomics. We explore the differences in cell states between paediatric and adult cell types, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in paediatric tissue. The new resources we present here improve our understanding of the brain during a critical period of its development and contribute to global efforts to build an inclusive cell map of the brain.

17.
Childs Nerv Syst ; 28(11): 1911-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22706985

ABSTRACT

INTRODUCTION: The frequency of adverse events, such as cerebral ischemia, following traumatic brain injury (TBI) is often debated. Point-in-time monitoring modalities provide important information, but have limited temporal resolution. PURPOSE: This study examines the frequency of an adverse event as a point prevalence at 24 and 72 h post-injury, compared with the cumulative burden measured as a frequency of the event over the full duration of monitoring. METHODS: Reduced brain tissue oxygenation (PbtO(2) < 10 mmHg) was the adverse event chosen for examination. Data from 100 consecutive children with severe TBI who received PbtO(2) monitoring were retrospectively examined, with data from 87 children found suitable for analysis. Hourly recordings were used to identify episodes of PbtO(2) less than 10 mmHg, at 24 and 72 h post-injury, and for the full duration of monitoring. RESULTS: Reduced PbtO(2) was more common early than late after injury. The point prevalence of reduced PbtO(2) at the selected time points was relatively low (10 % of patients at 24 h and no patients at the 72-h mark post-injury). The cumulative burden of these events over the full duration of monitoring was relatively high: 50 % of patients had episodes of PbtO(2) less than 10 mmHg and 88 % had PbtO(2) less than 20 mmHg. CONCLUSION: Point-in-time monitoring in a dynamic condition like TBI may underestimate the overall frequency of adverse events, like reduced PbtO(2), particularly when compared with continuous monitoring, which also has limitations, but provides a dynamic assessment over a longer time period.


Subject(s)
Brain Injuries/complications , Brain/physiopathology , Hypoxia-Ischemia, Brain/etiology , Intracranial Pressure/physiology , Adolescent , Age Factors , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Female , Glasgow Coma Scale , Humans , Hypoxia-Ischemia, Brain/diagnosis , Infant , Male , Oxygen/metabolism , Pediatrics , Retrospective Studies , Time Factors
18.
Front Neurol ; 13: 793080, 2022.
Article in English | MEDLINE | ID: mdl-35665032

ABSTRACT

Biomarkers in body fluids are helpful objective tools in diagnosis, prognosis and monitoring of (therapeutic) responses of many neurological diseases. Cerebrospinal fluid (CSF) biomarkers are part of the diagnostic toolbox for infectious neurological diseases. Tuberculous meningitis (TBM) and Human immunodeficiency virus (HIV), are important burdens of disease in Africa and can negatively affect brain health. Two thirds of the world's population of people living with HIV reside in sub-Saharan Africa and 25% of the global burden of tuberculosis (TB) is carried by the African continent. Neuroinflammation and damage of specific neuronal cell types are key constituents in the pathophysiology of these central nervous system (CNS) diseases, and important potential sources of circulating biomarkers. In this review, we summarize current research in the use of biomarkers in TBM and pediatric HIV as case demonstrations for high prevalence neurological diseases in Africa. Inflammatory molecules, primarily when detected in CSF, appear to have diagnostic value in these diseases, especially when measured as profiles. Brain injury molecules, such as S100, Neuron specific enolase and glial fibrillary acidic protein may have prognostic value in TBM, but more studies are needed. There is a need for more cost-economic and high sensitivity technologies to drive further biomarker discoveries and translate into healthcare improvements for these important healthcare problems in a globally fair way.

19.
Front Neurol ; 13: 805786, 2022.
Article in English | MEDLINE | ID: mdl-35250814

ABSTRACT

Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.

20.
Childs Nerv Syst ; 27(7): 1139-44, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21538131

ABSTRACT

PURPOSE: Although intracranial pressure (ICP) monitoring is a cornerstone of care for severe traumatic brain injury (TBI), the indications for ICP monitoring in children are unclear. Often, decisions are based on head computed tomography (CT) scan characteristics. Arguably, the patency of the basal cisterns is the most commonly used of these signs. Although raised ICP is more likely with obliterated basal cisterns, the implications of open cisterns are less clear. We examined the association between the status of perimesencephalic cisterns and time-linked ICP values in paediatric severe TBI. METHODS: ICP data linked to individual head CT scans were reviewed. Basal cisterns were classified as open or closed by blinded reviewers. For the initial CT scan, we examined ICP values for the first 6 h after monitor insertion. For follow-up scans, we examined ICP values 3 h before and after scanning. Mean ICP and any episode of ICP ≥ 20 mmHg during this period were recorded. RESULTS: Data from 104 patients were examined. Basal cisterns were patent in 51.72% of scans, effaced in 34.48% and obliterated in 13.79%. Even when cisterns were open, more than 40% of scans had at least one episode of ICP ≥ 20 mmHg, and 14% of scans had a mean ICP ≥ 20 mmHg. The specificity of open cisterns in predicting ICP < 20 mmHg was poor (57.9%). Age-related data were worse. CONCLUSION: Children with severe TBI frequently may have open basal cisterns on head CT despite increased ICP. Open cisterns should not discourage ICP monitoring.


Subject(s)
Brain Injuries/diagnostic imaging , Cisterna Magna/diagnostic imaging , Intracranial Hypertension/diagnosis , Monitoring, Physiologic , Adolescent , Child , Child, Preschool , Female , History, Ancient , Humans , Intracranial Pressure , Male , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL