ABSTRACT
Following surgical removal of one kidney, the other enlarges and increases its function. The mechanism for the sensing of this change and the growth is incompletely understood but begins within days and compensatory renal hypertrophy (CRH) is the dominant contributor to the growth. In many individuals undergoing nephrectomy for cancer or kidney donation this produces a substantial and helpful increase in renal function. Two main mechanisms have been proposed, one in which increased activity by the remaining kidney leads to hypertrophy, the second in which there is release of a kidney specific factor in response to a unilateral nephrectomy that initiates CRH. Whilst multiple growth factors and pathways such as the mTORC pathway have been implicated in experimental studies, their roles and the precise mechanism of CRH are not defined. Unrestrained hypoxia inducible factor activation in renal cancer promotes growth and may play an important role in driving CRH.
Subject(s)
Adaptation, Physiological/physiology , Hypertrophy , Kidney , Nephrectomy , Animals , Cell Enlargement , Cell Proliferation , Humans , Hypertrophy/etiology , Hypertrophy/metabolism , Hypertrophy/physiopathology , Kidney/growth & development , Kidney/physiopathology , Organ Size , Postoperative PeriodABSTRACT
Interferon-γ (IFN-γ)-preactivated mesenchymal stem cells (MSC-γ) are highly immunosuppressive but immunogenic in vivo due to their inherent expression of major histocompatibility (MHC) molecules. Here, we present an improved approach where we modified human bone marrow-derived MSC with interleukin-17A (MSC-17) to enhance T cell immunosuppression but not their immunogenicity. MSC-17, unlike MSC-γ, showed no induction or upregulation of MHC class I, MHC class II, and T cell costimulatory molecule CD40, but maintained normal MSC morphology and phenotypic marker expression. When cocultured with phytohemagglutinin (PHA)-activated human T cells, MSCs-17 were potent suppressors of T cell proliferation. Furthermore, MSC-17 inhibited surface CD25 expression and suppressed the elaboration of Th1 cytokines, IFN-γ, tumor necrosis factor-α (TNF-α), and IL-2 when compared with untreated MSCs (UT-MSCs). T cell suppression by MSC-17 correlated with increased IL-6 but not with indoleamine 2,3-dioxygenase 1, cyclooxygenase 1, and transforming growth factor ß-1. MSC-17 but not MSC-γ consistently induced CD4(+) CD25(high) CD127(low) FoxP3(+) regulatory T cells (iTregs) from PHA-activated CD4(+) CD25(-) T cells. MSC-induced iTregs expressed CD39, CD73, CD69, OX40, cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), and glucocorticoid-induced TNFR-related protein (GITR). These suppressive MSCs-17 can engender Tregs to potently suppress T cell activation with minimal immunogenicity and thus represent a superior T cell immunomodulator for clinical application.
Subject(s)
Immunologic Factors/immunology , Immunologic Factors/pharmacology , Interleukin-17/immunology , Interleukin-17/pharmacology , Mesenchymal Stem Cells/immunology , Cells, Cultured , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolismABSTRACT
BACKGROUND: Efficient development of atopic diseases requires interactions between allergen and adjuvant to initiate and amplify the underlying inflammatory responses. Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides that signal through the neurokinin-1 receptor (NK1R) to promote inflammation. Mast cells initiate the symptoms and tissue effects of atopic disorders, secreting TNF and IL-6 after FcεRI cross-linking by antigen-IgE complexes (FcεRI-activated mast cells [FcεRI-MCs]). Additionally, MCs express the NK1R, suggesting an adjuvant role for NK1R agonists in FcεRI-MC-mediated pathologies; however, in-depth research addressing this relevant aspect of MC biology is lacking. OBJECTIVE: We sought to investigate the effect of NK1R signaling and the individual roles of SP and HK-1 as potential adjuvants for FcεRI-MC-mediated allergic disorders. METHODS: Bone marrow-derived mast cells (BMMCs) from C57BL/6 wild-type (WT) or NK1R(-/-) mice were used to investigate the effects of NK1R signaling on FcεRI-MCs. BMMCs generated from Tac1(-/-) mice or after culture with Tac4 small interfering RNA were used to address the adjuvancy of SP and HK-1. WT, NK1R(-/-), and c-Kit(W-sh/W-sh) mice reconstituted with WT or NK1R(-/-) BMMCs were used to evaluate NK1R signaling on FcεRI-MC-mediated passive local and systemic anaphylaxis and on airway inflammation. RESULTS: FcεRI-activated MCs upregulated NK1R and HK-1 transcripts and protein synthesis, without modifying SP expression. In a positive signaling loop HK-1 promoted TNF and IL-6 secretion by MC degranulation and protein synthesis, the latter through the phosphoinositide 3-kinase/Akt/nuclear factor κB pathways. In vivo NK1R signaling was necessary for the development of passive local and systemic anaphylaxis and airway inflammation. CONCLUSIONS: FcεRI stimulation of MCs promotes autocrine secretion of HK-1, which signals through NK1R to provide adjuvancy for efficient development of FcεRI-MC-mediated disorders.
Subject(s)
Autocrine Communication , Immunoglobulin E/immunology , Inflammation/immunology , Inflammation/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Tachykinins/metabolism , Anaphylaxis/immunology , Anaphylaxis/metabolism , Animals , Disease Models, Animal , Female , Interleukin-6/biosynthesis , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Knockout , Receptors, IgE/metabolism , Receptors, Neurokinin-1/metabolism , Signal Transduction , Tumor Necrosis Factors/biosynthesisABSTRACT
Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses.
Subject(s)
Dendritic Cells/immunology , Immunity, Cellular/immunology , Interleukin-12/immunology , Receptors, Neurokinin-1/immunology , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/immunology , Cyclic AMP Response Element-Binding Protein/metabolism , Dendritic Cells/metabolism , Dendritic Cells/transplantation , Flow Cytometry , Immunization/methods , Immunophenotyping , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Receptors, Neurokinin-1/agonists , Receptors, Neurokinin-1/metabolism , Signal Transduction/immunology , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolismSubject(s)
Exosomes , Nanoparticles , Albumins , Albuminuria , Chemokine CCL2 , Epithelial Cells , Humans , InflammationABSTRACT
Following kidney removal, the remaining kidney enlarges and increases its function. The mechanism and signals driving this compensatory kidney hypertrophy and the enlargement of its constituent kidney cells remains elusive. RNA-seq studies in mice undergoing hypertrophy 24, 48, and 72 h following nephrectomy were undertaken to understand the early transcriptional changes. This revealed substantial enhancement of cholesterol biosynthesis pathways, increases in mitochondrial gene expression and cell cycle perturbations. Single nuclei RNA-seq delineated cell specific changes at 24 h post nephrectomy and showed that sterol binding protein 2 (SREBP2) activity increases in medullary thick ascending limb cells in keeping with promotion of cholesterol synthesis. Cultured renal tubular cells were examined for insulin-like growth factor-1 (IGF-1) stimulated hypertrophy and SREBP2 was found to be required for increase in cell size. This work describes the early cell specific growth pathways mediating cellular and kidney hypertrophy with an intriguing role for cholesterol synthesis.
ABSTRACT
Many viruses produce microRNAs (miRNAs), termed viral miRNAs (v-miRNAs), with the capacity to target host gene expression. Bioinformatic and cell culture studies suggest that SARS-CoV-2 can also generate v-miRNAs. This patient-based study defines the SARS-CoV-2 encoded small RNAs present in nasopharyngeal swabs of patients with COVID-19 infection using small RNA-seq. A specific conserved sequence (CoV2-miR-O8) is defined that is not expressed in other coronaviruses but is preserved in all SARS-CoV-2 variants. CoV2-miR-O8 is highly represented in nasopharyngeal samples from patients with COVID-19 infection, is detected by RT-PCR assays in patients, has features consistent with Dicer and Drosha generation as well as interaction with Argonaute and targets specific human microRNAs.
ABSTRACT
Intrahepatic islet transplantation for type 1 diabetes is limited by the need for multiple infusions and poor islet viability posttransplantation. The development of alternative transplantation sites is necessary to improve islet survival and facilitate monitoring and retrieval. We tested a clinically proven biodegradable temporizing matrix (BTM), a polyurethane-based scaffold, to generate a well-vascularized intracutaneous "neodermis" within the skin for islet transplantation. In murine models, BTM did not impair syngeneic islet renal-subcapsular transplant viability or function, and it facilitated diabetes cure for over 150 days. Furthermore, BTM supported functional neonatal porcine islet transplants into RAG-1-/- mice for 400 days. Hence, BTM is nontoxic for islets. Two-photon intravital imaging used to map vessel growth through time identified dense vascular networks, with significant collagen deposition and increases in vessel mass up to 30 days after BTM implantation. In a preclinical porcine skin model, BTM implants created a highly vascularized intracutaneous site by day 7 postimplantation. When syngeneic neonatal porcine islets were transplanted intracutaneously, the islets remained differentiated as insulin-producing cells, maintained normal islet architecture, secreted c-peptide, and survived for over 100 days. Here, we show that BTM facilitates formation of an islet-supportive intracutaneous neodermis in a porcine preclinical model, as an alternative islet-transplant site. ARTICLE HIGHLIGHTS: Human and porcine pancreatic islets were transplanted into a fully vascularized biodegradable temporizing matrix (Novosorb) that creates a unique intracutaneous site outside of the liver in a large-animal preclinical model. The intracutaneous prevascularized site supported pancreatic islet survival for 3 months in a syngeneic porcine-transplant model. Pancreatic (human and porcine) islet survival and function were demonstrated in an intracutaneous site outside of the liver for the first time in a large-animal preclinical model.
Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Swine , Humans , Animals , Mice , Islets of Langerhans Transplantation/methods , Graft Survival , Islets of Langerhans/blood supply , Diabetes Mellitus, Type 1/surgery , CollagenABSTRACT
Type 1 diabetes is a complex disease characterized by the lack of endogenous insulin secreted from the pancreatic ß-cells. Although ß-cell targeted autoimmune processes and ß-cell dysfunction are known to occur in type 1 diabetes, a complete understanding of the cell-to-cell interactions that support pancreatic function is still lacking. To characterize the pancreatic endocrine compartment, we studied pancreata from healthy adult donors and investigated a single cell surface adhesion molecule, desmoglein-2 (DSG2). Genetically-modified mice lacking Dsg2 were examined for islet cell mass, insulin production, responses to glucose, susceptibility to a streptozotocin-induced mouse model of hyperglycaemia, and ability to cure diabetes in a syngeneic transplantation model. Herein, we have identified DSG2 as a previously unrecognized adhesion molecule that supports ß-cells. Furthermore, we reveal that DSG2 is within the top 10 percent of all genes expressed by human pancreatic islets and is expressed by the insulin-producing ß-cells but not the somatostatin-producing δ-cells. In a Dsg2 loss-of-function mice (Dsg2lo/lo), we observed a significant reduction in the number of pancreatic islets and islet size, and consequently, there was less total insulin content per islet cluster. Dsg2lo/lo mice also exhibited a reduction in blood vessel barrier integrity, an increased incidence of streptozotocin-induced diabetes, and islets isolated from Dsg2lo/lo mice were more susceptible to cytokine-induced ß-cell apoptosis. Following transplantation into diabetic mice, islets isolated from Dsg2lo/lo mice were less effective than their wildtype counterparts at curing diabetes. In vitro assays using the Beta-TC-6 murine ß-cell line suggest that DSG2 supports the actin cytoskeleton as well as the release of cytokines and chemokines. Taken together, our study suggests that DSG2 is an under-appreciated regulator of ß-cell function in pancreatic islets and that a better understanding of this adhesion molecule may provide new opportunities to combat type 1 diabetes.
Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Islets of Langerhans , Animals , Humans , Mice , Cell Survival , Desmogleins/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , StreptozocinABSTRACT
Efficient Ca2+ flux induced during cognate T cell activation requires signaling the T cell receptor (TCR) and unidentified G-protein-coupled receptors (GPCRs). T cells express the neurokinin-1 receptor (NK1R), a GPCR that mediates Ca2+ flux in excitable and non-excitable cells. However, the role of the NK1R in TCR signaling remains unknown. We show that the NK1R and its agonists, the neuropeptides substance P and hemokinin-1, co-localize within the immune synapse during cognate activation of T cells. Simultaneous TCR and NK1R stimulation is necessary for efficient Ca2+ flux and Ca2+-dependent signaling that sustains the survival of activated T cells and helper 1 (Th1) and Th17 bias. In a model of contact dermatitis, mice with T cells deficient in NK1R or its agonists exhibit impaired cellular immunity, due to high mortality of activated T cells. We demonstrate an effect of the NK1R in T cells that is relevant for immunotherapies based on pro-inflammatory neuropeptides and its receptors.
Subject(s)
Calcium/metabolism , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Neurokinin-1/metabolism , Signal Transduction , T-Lymphocytes/immunology , Animals , Autocrine Communication/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Polarity/drug effects , Cell Survival/drug effects , Immunological Synapses/drug effects , Immunological Synapses/metabolism , Interleukin-2/metabolism , Lymphocyte Activation/drug effects , Mice , NF-kappa B/metabolism , Receptors, Neurokinin-1/agonists , Signal Transduction/drug effects , Substance P/pharmacology , T-Lymphocytes/drug effects , Tachykinins/pharmacology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunologyABSTRACT
Over the last two decades, pancreatic islet transplantations have become a promising treatment for Type I diabetes. However, although providing a consistent and sustained exogenous insulin supply, there are a number of limitations hindering the widespread application of this approach. These include the lack of sufficient vasculature and allogeneic immune attacks after transplantation, which both contribute to poor cell survival rates. Here, these issues are addressed using a biofabrication approach. An alginate/gelatin-based bioink formulation is optimized for islet and islet-related cell encapsulation and 3D printing. In addition, a custom-designed coaxial printer is developed for 3D printing of multicellular islet-containing constructs. In this work, the ability to fabricate 3D constructs with precise control over the distribution of multiple cell types is demonstrated. In addition, it is shown that the viability of pancreatic islets is well maintained after the 3D printing process. Taken together, these results represent the first step toward an improved vehicle for islet transplantation and a potential novel strategy to treat Type I diabetes.
Subject(s)
Bioprinting/methods , Islets of Langerhans/cytology , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Alginates/chemistry , Animals , Bioprinting/instrumentation , Cell Proliferation , Cell Survival , Gelatin/chemistry , Ink , Islets of Langerhans Transplantation , Male , Mice , Mice, Inbred C57BL , Polymers/chemistry , Porosity , Rheology , Tissue EngineeringABSTRACT
PolyJet three-dimensional (3D) printing allows for the rapid manufacturing of 3D moulds for the fabrication of cross-linked poly(dimethylsiloxane) microwell arrays (PMAs). As this 3D printing technique has a resolution on the micrometer scale, the moulds exhibit a distinct surface roughness. In this study, the authors demonstrate by optical profilometry that the topography of the 3D printed moulds can be transferred to the PMAs and that this roughness induced cell adhesive properties to the material. In particular, the topography facilitated immobilization of endothelial cells on the internal walls of the microwells. The authors also demonstrate that upon immobilization of endothelial cells to the microwells, a second population of cells, namely, pancreatic islets could be introduced, thus producing a 3D coculture platform.
Subject(s)
Cell Adhesion , Cells, Immobilized/physiology , Coculture Techniques/methods , Dimethylpolysiloxanes/metabolism , Endothelial Cells/physiology , Glucagon-Secreting Cells/physiology , Insulin-Secreting Cells/physiology , Humans , Islets of Langerhans , Printing, Three-Dimensional , Surface PropertiesABSTRACT
Dendritic cells (DC) are the most potent antigen-presenting cells and are fundamental for the establishment of transplant tolerance. The Dendritic Cell-Specific Intracellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN; CD209) receptor provides a target for dendritic cell therapy. Biodegradable and high-surface area porous silicon (pSi) nanoparticles displaying anti-DC-SIGN antibodies and loaded with the immunosuppressant rapamycin (Sirolimus) serve as a fit-for-purpose platform to target and modify DC. Here, we describe the fabrication of rapamycin-loaded DC-SIGN displaying pSi nanoparticles, the uptake efficiency into DC and the extent of nanoparticle-induced modulation of phenotype and function. DC-SIGN antibody displaying pSi nanoparticles favourably targeted and were phagocytosed by monocyte-derived and myeloid DC in whole human blood in a time- and dose-dependent manner. DC preconditioning with rapamycin-loaded nanoparticles, resulted in a maturation resistant phenotype and significantly suppressed allogeneic T-cell proliferation.
Subject(s)
Dendritic Cells/drug effects , Nanoparticles/chemistry , Silicon/chemistry , Dendritic Cells/immunology , Humans , Nanomedicine , PorosityABSTRACT
Islet transplantation is currently the only minimally invasive therapy available for patients with type 1 diabetes that can lead to insulin independence; however, it is limited to only a small number of patients. Although clinical procedures have improved in the isolation and culture of islets, a large number of islets are still lost in the pre-transplant period, limiting the success of this treatment. Moreover, current practice includes islets being prepared at specialized centers, which are sometimes remote to the transplant location. Thus, a critical point of intervention to maintain the quality and quantity of isolated islets is during transportation between isolation centers and the transplanting hospitals, during which 20-40% of functional islets can be lost. The current study investigated the use of an oxygen-permeable PDMS microwell device for long-distance transportation of isolated islets. We demonstrate that the microwell device protected islets from aggregation during transport, maintaining viability and average islet size during shipping.
ABSTRACT
Compact bones (CB) are major reservoirs of mouse mesenchymal stem cells (mMSC). Here, we established a protocol to isolate MSC from CB and tested their immunosuppressive potential. Collagenase type II digestion of BM-flushed CB from C57B/6 mice was performed to liberate mMSC precursors from bone surfaces to establish nondepleted mMSC. CB cells were also immunodepleted based on the expression of CD45 (leukocytes) and TER119 (erythroid cells) to eliminate hematopoietic cells. CD45-TER119- CB cells were subsequently used to generate depleted mMSC. CB nondepleted and depleted mMSC progenitors were cultured under hypoxic conditions to establish primary mMSC cultures. CB depleted mMSC compared to nondepleted mMSC showed greater cell numbers at subculturing and had increased functional ability to differentiate into adipocytes and osteoblasts. CB depleted mMSC had high purity and expressed key mMSC markers (>85% Sca-1, CD29, CD90) with no mature hematopoietic contaminating cells (<5% CD45, CD11b) when subcultured to passage 5 (P5). Nondepleted mMSC cultures, however, were less pure and heterogenous with <72% Sca-1+, CD29+, and CD90+ cells at early passages (P1 or P2), along with high percentages of contaminating CD11b+ (35.6%) and CD45+ (39.2%) cells that persisted in culture long term. Depleted and nondepleted mMSC nevertheless exhibited similar potency to suppress total (CD3+), CD4+ and CD8+ T cell proliferation, in a dendritic cell allostimulatory one-way mixed lymphocyte reaction. CB depleted mMSC, pretreated with proinflammatory cytokines IFN-γ, TNF-α, and IL-17A, showed superior suppression of CD8+ T cell, but not CD4+ T cell proliferation, relative to untreated-mMSC. In conclusion, CB depleted mMSC established under hypoxic conditions and treated with selective cytokines represent a novel source of potent immunosuppressive MSC. As these cells have enhanced immune modulatory function, they may represent a superior product for use in clinical allotransplantation.
Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation/physiology , Cell Proliferation/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Adipocytes/cytology , Animals , Cell Culture Techniques/methods , Cell Separation , Interleukin-17/metabolism , Lymphocyte Activation/physiology , Mice , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.
ABSTRACT
Pancreatic islet transplantation is a promising clinical treatment for type 1 diabetes, but success is limited by extensive ß-cell death in the immediate posttransplant period and impaired islet function in the longer term. Following transplantation, appropriate vascular remodeling is crucial to ensure the survival and function of engrafted islets. The sphingosine kinase (SK) pathway is an important regulator of vascular beds, but its role in the survival and function of transplanted islets is unknown. We observed that donor islets from mice deficient in SK1 (Sphk1 knockout) contain a reduced number of resident intraislet vascular endothelial cells. Furthermore, we demonstrate that the main product of SK1, sphingosine-1-phosphate, controls the migration of intraislet endothelial cells in vitro. We reveal in vivo that Sphk1 knockout islets have an impaired ability to cure diabetes compared with wild-type controls. Thus, SK1-deficient islets not only contain fewer resident vascular cells that participate in revascularization, but likely also a reduced ability to recruit new vessels into the transplanted islet. Together, our data suggest that SK1 is important for islet revascularization following transplantation and represents a novel clinical target for improving transplant outcomes.
Subject(s)
Cell Movement/genetics , Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 1/surgery , Endothelial Cells/cytology , Islets of Langerhans Transplantation , Islets of Langerhans/blood supply , Lysophospholipids/metabolism , Neovascularization, Physiologic/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sphingosine/analogs & derivatives , Animals , Flow Cytometry , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Sphingosine/metabolism , Transplants/blood supplyABSTRACT
Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response.
ABSTRACT
The immune response against transplanted allografts is one of the most potent reactions mounted by the immune system. The acute rejection response has been attributed to donor dendritic cells (DCs), which migrate to recipient lymphoid tissues and directly activate alloreactive T cells against donor MHC molecules. Here, using a murine heart transplant model, we determined that only a small number of donor DCs reach lymphoid tissues and investigated how this limited population of donor DCs efficiently initiates the alloreactive T cell response that causes acute rejection. In our mouse model, efficient passage of donor MHC molecules to recipient conventional DCs (cDCs) was dependent on the transfer of extracellular vesicles (EVs) from donor DCs that migrated from the graft to lymphoid tissues. These EVs shared characteristics with exosomes and were internalized or remained attached to the recipient cDCs. Recipient cDCs that acquired exosomes became activated and triggered full activation of alloreactive T cells. Depletion of recipient cDCs after cardiac transplantation drastically decreased presentation of donor MHC molecules to directly alloreactive T cells and delayed graft rejection in mice. These findings support a key role for transfer of donor EVs in the generation of allograft-targeting immune responses and suggest that interrupting this process has potential to dampen the immune response to allografts.
Subject(s)
Allografts/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Exosomes/metabolism , Immune Tolerance/immunology , Animals , Cell Movement , Graft Rejection , Graft Survival , Heart Transplantation , Major Histocompatibility Complex/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Skin Transplantation , Spleen/metabolism , T-Lymphocytes/cytology , Transplantation, HomologousABSTRACT
Successful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells. We show that donor DCs that accompany heart or kidney grafts are rapidly replaced by recipient DCs. The DCs originate from non-classical monocytes and form stable, cognate interactions with effector T cells in the graft. Eliminating recipient DCs reduces the proliferation and survival of graft-infiltrating T cells and abrogates ongoing rejection or rejection mediated by transferred effector T cells. Therefore, host DCs that infiltrate transplanted organs sustain the alloimmune response after T-cell activation has already occurred. Targeting these cells provides a means for preventing or treating rejection.