Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nature ; 617(7960): 351-359, 2023 May.
Article in English | MEDLINE | ID: mdl-37076628

ABSTRACT

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Subject(s)
Brain Mapping , Cognition , Motor Cortex , Brain Mapping/methods , Hand/physiology , Magnetic Resonance Imaging , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Humans , Infant, Newborn , Infant , Child , Animals , Macaca/anatomy & histology , Macaca/physiology , Foot/physiology , Mouth/physiology , Datasets as Topic
2.
Epilepsia ; 64(9): 2274-2285, 2023 09.
Article in English | MEDLINE | ID: mdl-37303192

ABSTRACT

OBJECTIVE: Corpus callosotomy (CC) is a palliative surgical intervention for patients with medically refractory epilepsy that has evolved in recent years to include a less-invasive alternative with the use of laser interstitial thermal therapy (LITT). LITT works by heating a stereotactically placed laser fiber to ablative temperatures under real-time magnetic resonance imaging (MRI) thermometry. This study aims to (1) describe the surgical outcomes of CC in a large cohort of children with medically refractory epilepsy, (2) compare anterior and complete CC, and (3) review LITT as a surgical alternative to open craniotomy for CC. METHODS: This retrospective cohort study included 103 patients <21 years of age with at least 1 year follow-up at a single institution between 2003 and 2021. Surgical outcomes and the comparative effectiveness of anterior vs complete and open versus LITT surgical approaches were assessed. RESULTS: CC was the most common surgical disconnection (65%, n = 67) followed by anterior two-thirds (35%, n = 36), with a portion proceeding to posterior completion (28%, n = 10). The overall surgical complication rate was 6% (n = 6/103). Open craniotomy was the most common approach (87%, n = 90), with LITT used increasingly in recent years (13%, n = 13). Compared to open, LITT had shorter hospital stay (3 days [interquartile range (IQR) 2-5] vs 5 days [IQR 3-7]; p < .05). Modified Engel class I, II, III, and IV outcomes at last follow-up were 19.8% (n = 17/86), 19.8% (n = 17/86), 40.2% (n = 35/86), and 19.8% (n = 17/86). Of the 70 patients with preoperative drop seizures, 75% resolved postoperatively (n = 52/69). SIGNIFICANCE: No significant differences in seizure outcome between patients who underwent only anterior CC and complete CC were observed. LITT is a less-invasive surgical alternative to open craniotomy for CC, associated with similar seizure outcomes, lower blood loss, shorter hospital stays, and lower complication rates, but with longer operative times, when compared with the open craniotomy approach.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Laser Therapy , Humans , Child , Drug Resistant Epilepsy/surgery , Retrospective Studies , Treatment Outcome , Epilepsy/surgery , Seizures/surgery , Laser Therapy/methods , Magnetic Resonance Imaging/methods , Lasers , Corpus Callosum/surgery
3.
Neuroimage ; 254: 119138, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35339687

ABSTRACT

Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain's white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL's BedpostX [BPX], DSI Studio's Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3's Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Algorithms , Bayes Theorem , Brain/anatomy & histology , Brain/diagnostic imaging , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Reproducibility of Results
4.
Pediatr Neurosurg ; 57(4): 245-259, 2022.
Article in English | MEDLINE | ID: mdl-35508115

ABSTRACT

INTRODUCTION: The benefits of performing open and endovascular procedures in a hybrid neuroangiography surgical suite include confirmation of treatment results and reduction in number of procedures, leading to improved efficiency of care. Combined procedural suites are infrequently used in pediatric facilities due to technical and logistical limitations. We report the safety, utility, and lessons learned from a single-institution experience using a hybrid suite equipped with biplane rotational digital subtraction angiography and pan-surgical capabilities. METHODS: We conducted a retrospective review of consecutive cases performed at our institution that utilized the hybrid neuroangiography surgical suite from February 2020 to August 2021. Demographics, surgical metrics, and imaging results were collected from the electronic medical record. Outcomes, interventions, and nuances for optimizing preoperative/intraoperative setup and postoperative care were presented. RESULTS: Eighteen procedures were performed in 17 patients (mean age 13.4 years, range 6-19). Cases included 14 arteriovenous malformations (AVM; 85.7% ruptured), one dural arteriovenous fistula, one mycotic aneurysm, and one hemangioblastoma. The average operative time was 416 min (range 321-745). There were no intraoperative or postoperative complications. All patients were alive at follow-up (range 0.1-14.7 months). Five patients had anticipated postoperative deficits arising from their hemorrhage, and 12 returned to baseline neurological status. Four illustrative cases demonstrating specific, unique applications of the hybrid angiography suite are presented. CONCLUSION: The hybrid neuroangiography surgical suite is a safe option for pediatric cerebrovascular pathologies requiring combined surgical and endovascular intervention. Hybrid cases can be completed within the same anesthesia session and reduce the need for return to the operating room for resection or surveillance angiography. High-quality intraoperative angiography enables diagnostic confirmation under a single procedure, mitigating risk of morbidity and accelerating recovery. Effective multidisciplinary planning enables preoperative angiograms to be completed to inform the operative plan immediately prior to definitive resection.


Subject(s)
Central Nervous System Vascular Malformations , Endovascular Procedures , Neurosurgery , Adolescent , Adult , Angiography, Digital Subtraction , Central Nervous System Vascular Malformations/surgery , Child , Endovascular Procedures/methods , Humans , Neurosurgical Procedures , Young Adult
5.
Pediatr Radiol ; 51(11): 2093-2097, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34286352

ABSTRACT

Spontaneous intracranial hypotension is an uncommon etiology of secondary headaches in children. We report a unique case of a girl with kaposiform lymphangiomatosis who developed postural headaches and imaging features of spontaneous intracranial hypotension without a spinal extradural collection. The girl underwent dynamic computed tomography myelography which revealed a cerebrospinal fluid (CSF)-lymphatic fistula related to a lymphatic malformation associated with the right T10 nerve. She underwent surgical ligation of the CSF-lymphatic fistula, resulting in resolution of the headaches. Spinal CSF-lymphatic fistulas are rare and have previously been reported in two patients with Gorham-Stout disease. The current report suggests that patients with systemic lymphatic anomalies who develop postural headaches should undergo evaluation for spontaneous intracranial hypotension and a CSF-lymphatic fistula. If discovered, surgical ligation is a potential treatment.


Subject(s)
Fistula , Intracranial Hypotension , Cerebrospinal Fluid Leak , Child , Female , Fistula/complications , Fistula/diagnostic imaging , Humans , Intracranial Hypotension/complications , Intracranial Hypotension/diagnostic imaging , Magnetic Resonance Imaging , Myelography , Spine
6.
Pediatr Neurosurg ; 56(5): 482-491, 2021.
Article in English | MEDLINE | ID: mdl-34320494

ABSTRACT

INTRODUCTION: Tumor-associated intracranial aneurysms are rare and not well understood. CASE PRESENTATION: We describe a 4-year-old female with multiple intracranial aneurysms intimately associated with a suprasellar germ cell tumor (GCT). We provide the clinical history, medical, and surgical treatment course, as well as a comprehensive and concise synthesis of the literature on tumor-associated aneurysms. DISCUSSION: We discuss mechanisms for aneurysm formation with relevance to the current case, including cellular and paracrine signaling pertinent to suprasellar GCTs and possible molecular pathways involved. We review the complex multidisciplinary treatment required for complex tumor and cerebrovascular interactions.


Subject(s)
Intracranial Aneurysm , Neoplasms, Germ Cell and Embryonal , Pituitary Neoplasms , Child, Preschool , Female , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/etiology , Intracranial Aneurysm/surgery , Neoplasms, Germ Cell and Embryonal/diagnostic imaging , Neoplasms, Germ Cell and Embryonal/surgery
7.
Proc Natl Acad Sci U S A ; 114(50): 13278-13283, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29183973

ABSTRACT

Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.


Subject(s)
Connectome , Corpus Callosum/physiology , Functional Laterality , Sensorimotor Cortex/physiology , Adolescent , Brain Waves , Child , Child, Preschool , Corpus Callosum/diagnostic imaging , Corpus Callosum/surgery , Female , Humans , Male , Sensorimotor Cortex/diagnostic imaging
8.
Neurosurg Focus ; 47(6): E15, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31786561

ABSTRACT

Resting-state functional MRI (rs-fMRI) is a well-established method for studying intrinsic connectivity and mapping the topography of functional networks in the human brain. In the clinical setting, rs-fMRI has been used to define functional topography, typically language and motor systems, in the context of preoperative planning for neurosurgery. Intraoperative mapping of critical speech and motor areas with electrocortical stimulation (ECS) remains standard practice, but preoperative noninvasive mapping has the potential to reduce operative time and provide functional localization when awake mapping is not feasible. Task-based fMRI has historically been used for this purpose, but it can be limited by the young age of the patient, cognitive impairment, poor cooperation, and need for sedation. Resting-state fMRI allows reliable analysis of all functional networks with a single study and is inherently independent of factors affecting task performance. In this review, the authors provide a summary of the theory and methods for resting-state network mapping. They provide case examples illustrating clinical implementation and discuss limitations of rs-fMRI and review available data regarding performance in comparison to ECS. Finally, they discuss novel opportunities for future clinical applications and prospects for rs-fMRI beyond mapping of regions to avoid during surgery but, instead, as a tool to guide novel network-based therapies.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Connectome/methods , Electric Stimulation , False Negative Reactions , False Positive Reactions , Forecasting , Frontal Lobe/diagnostic imaging , Frontal Lobe/surgery , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Humans , Incidental Findings , Male , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/surgery , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Young Adult
9.
Neuroimage ; 175: 111-121, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29518565

ABSTRACT

Spatial attention is the cognitive function that coordinates the selection of visual stimuli with appropriate behavioral responses. Recent studies have reported that phase-amplitude coupling (PAC) of low and high frequencies covaries with spatial attention, but differ on the direction of covariation and the frequency ranges involved. We hypothesized that distinct phase-amplitude frequency pairs have differentiable contributions during tasks that manipulate spatial attention. We investigated this hypothesis with electrocorticography (ECoG) recordings from participants who engaged in a cued spatial attention task. To understand the contribution of PAC to spatial attention we classified cortical sites by their relationship to spatial variables or behavioral performance. Local neural activity in spatial sites was sensitive to spatial variables in the task, while local neural activity in behavioral sites correlated with reaction time. We found two PAC frequency clusters that covaried with different aspects of the task. During a period of cued attention, delta-phase/high-gamma (DH) PAC was sensitive to cue direction in spatial sites. In contrast, theta-alpha-phase/beta-low-gamma-amplitude (TABL) PAC robustly correlated with future reaction times in behavioral sites. Finally, we investigated the origins of TABL PAC and found it corresponded to behaviorally relevant, sharp waveforms, which were also coupled to a low frequency rhythm. We conclude that TABL and DH PAC correspond to distinct mechanisms during spatial attention tasks and that sharp waveforms are elements of a coupled dynamical process.


Subject(s)
Attention/physiology , Brain Waves/physiology , Cerebral Cortex/physiology , Cues , Electrocorticography/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Signal Processing, Computer-Assisted , Space Perception/physiology , Visual Perception/physiology , Adult , Cerebral Cortex/physiopathology , Epilepsy/physiopathology , Humans , Reaction Time/immunology
10.
Childs Nerv Syst ; 34(12): 2485-2490, 2018 12.
Article in English | MEDLINE | ID: mdl-29961083

ABSTRACT

BACKGROUND: Dermoid cysts are rare congenital teratomas that can occasionally rupture and cause chemical meningitis, neurological deficit, or hydrocephalus. Rarely, dermoid cysts in the pediatric population can rupture spontaneously and even more rarely rupture due to trauma. To date, there are only five documented cases of traumatic rupture of a dermoid cyst. A 2-year-old male presented with 5 days of left eye ptosis and ophthalmoplegia after suffering a fall and was found to have a ruptured left anterior clinoid dermoid cyst that was surgically resected. The patient had significant improvement postoperatively. SIGNIFICANCE: To the authors' knowledge, this is the first reported case in the literature of a ruptured dermoid cyst after trauma in a pediatric patient and the first case of a traumatically ruptured dermoid cyst presenting with neurological deficit.


Subject(s)
Accidental Falls , Brain Neoplasms/pathology , Dermoid Cyst/pathology , Child, Preschool , Humans , Male , Rupture
12.
Proc Natl Acad Sci U S A ; 110(48): 19585-90, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218604

ABSTRACT

Selective attention allows us to filter out irrelevant information in the environment and focus neural resources on information relevant to our current goals. Functional brain-imaging studies have identified networks of broadly distributed brain regions that are recruited during different attention processes; however, the dynamics by which these networks enable selection are not well understood. Here, we first used functional MRI to localize dorsal and ventral attention networks in human epileptic subjects undergoing seizure monitoring. We subsequently recorded cortical physiology using subdural electrocorticography during a spatial-attention task to study network dynamics. Attention networks become selectively phase-modulated at low frequencies (δ, θ) during the same task epochs in which they are recruited in functional MRI. This mechanism may alter the excitability of task-relevant regions or their effective connectivity. Furthermore, different attention processes (holding vs. shifting attention) are associated with synchrony at different frequencies, which may minimize unnecessary cross-talk between separate neuronal processes.


Subject(s)
Attention/physiology , Brain/physiology , Epilepsy/physiopathology , Nerve Net/physiology , Neural Pathways/physiology , Space Perception/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging
13.
Neurosurg Focus ; 39 Video Suppl 1: V16, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26132614

ABSTRACT

Perforating arteries rarely project from the fundus of an aneurysm. We present the case of a 35-year-old woman who was found to have a right posterior communicating artery (PCOM) aneurysm via catheter angiography. Superselective microcatheter angiography revealed that perforating arteries arose from the aneurysm fundus that supplied the anterolateral thalamus. Microsurgical exploration confirmed several small perforating arteries arising from the aneurysm dome as well as an atretic distal PCOM artery. Given the complex anatomy, the lesion was unsuitable for clipping. We propose that this aneurysm represents a developmental variant whereby the proximal PCOM artery becomes atretic and terminates in PCOM perforators. The video can be found here: http://youtu.be/iDcp9fsDjq4.


Subject(s)
Arteries/pathology , Endovascular Procedures/methods , Intracranial Aneurysm/surgery , Microsurgery/methods , Adult , Cerebral Angiography , Female , Humans
14.
J Neurosurg Pediatr ; 33(1): 95-104, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37922551

ABSTRACT

OBJECTIVE: Subependymal giant cell astrocytomas (SEGAs) are WHO grade 1 tumors associated with tuberous sclerosis that classically arise from the ventricular wall near the caudate groove and foramen of Monro. Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique, which works by heating a stereotactically placed laser fiber to ablative temperatures under MRI thermometry monitoring. In this paper, the authors present LITT as a surgical alternative to open resection of SEGAs. METHODS: Twelve patients with SEGAs who underwent 16 procedures between 2007 and 2022 at a single institution were retrospectively reviewed. These patients underwent either open resection or LITT. Clinical data, imaging, recurrence rate, further treatments, and related complications were analyzed. RESULTS: Among the 16 procedures, 9 were open resection and 7 were LITT. An external ventricular drain was placed in 66% (6/9) of open procedures and 57.1% (4/7) of LITT cases. A septostomy was performed in 56% (5/9) of open procedures and 29% (2/7) of LITT cases. Complication rates were higher in open cases than in LITT procedures (44% vs 0%, p < 0.05). Complications included hydrocephalus, transient venous ischemia, wound infection, and bone flap migration. The median length of hospital stay was 4 days (IQR 3.3-5.5 days) for open cases and 4 days (IQR 3.0-7.0 days) for LITT procedures. Recurrence or progression occurred after 3 open cases and 2 LITT cases (33% vs 33%, p = 0.803). For the recurrences, 2 open cases underwent stereotactic radiosurgery, 1 open case underwent LITT, and 1 LITT case underwent repeat LITT. Among the LITT cases, only the patients with no decrease in tumor size by 6 months experienced tumor progression afterward. The 2 LITT cases with progression were the only ones with calcification present on preoperative imaging. The median follow-up times for cases assessed for progression were 8.4 years (IQR 3.8-14.4 years) for open resection and 3.9 years (IQR 3.4-5.1 years) for LITT. CONCLUSIONS: The small size of this case series limits generalizability or adequate comparison of safety. However, this series adds to the literature supporting LITT as a less invasive surgical alternative to open resection of SEGAs and demonstrates that LITT has similar recurrence and/or progression rates to open resection. Additional studies with more data are necessary for comprehensive comparisons between open resection and LITT for treating SEGA.


Subject(s)
Astrocytoma , Brain Neoplasms , Laser Therapy , Humans , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Astrocytoma/diagnostic imaging , Astrocytoma/surgery , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/methods , Laser Therapy/methods , Lasers
15.
J Neurosurg Pediatr ; 33(3): 245-255, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38100763

ABSTRACT

OBJECTIVE: Neuroblastoma with spinal involvement accounts for up to 30% of pediatric spinal tumors and can cause profound neurological deficits. Chemotherapy is the preferred treatment option, but in select patients resection may be indicated. The goal of this study was to identify preoperative factors that led to early surgical intervention, with a specific emphasis on identifying differences on long-term neurological function and spinal deformity in the recent treatment era. METHODS: A retrospective chart review was performed on all children diagnosed with neuroblastoma at a single institution from 2007 to 2020. Patient demographics, symptoms (motor deficit and sphincter dysfunction), and tumor characteristics (e.g., 123I metaiodobenzylguanidine [MIBG] avidity, MYCN amplification, chromosomal abnormality, pathology, catecholamine secretion, and stage) were recorded. Spine involvement included neural or vertebral extension, spinal cord compression, and/or T2 signal change on MRI. Survival, neurological status (motor deficit, sphincter dysfunction), and spine deformity at last follow-up were compared using univariate and multivariate analyses. The variables that contributed to neurological and deformity outcome were assessed with binomial logistic and linear regression models using R software. RESULTS: Seventy-seven of the 160 patients with neuroblastoma had spinal neuroblastoma, meaning either bone metastases alone (n = 43) or intraspinal extension with or without neurological deficit (n= 34). Most patients with spinal neuroblastoma were treated with chemotherapy and/or radiation therapy (97% and 57%, respectively). Resection of the spinal tumor was performed in 14 (18%) patients, all of whom also received chemotherapy. Between the surgical and nonsurgical patients, no baseline demographic differences were found. However, surgical patients were more likely to present with either motor deficits (50% vs 5%, p = 0.0011) or bladder/bowel dysfunction (14% vs 0%, p 0.035), and a shorter median time to onset of neurological symptoms (33 vs 80 days, p = 0.0096). Surgical patients also had a significantly shorter median overall survival (33.0 vs 54 months, p = 0.014). Of the 14 patients who underwent spine surgery, 2 patients underwent surgery at the time of diagnosis while the remaining 12 underwent initial chemotherapy followed later by resection. The 2 patients who underwent initial surgery had excellent outcomes, with neither long-term motor or bowel/bladder deficits nor spinal deformity. CONCLUSIONS: Surgical patients had shorter overall survival. However, the 2 patients with radiographic evidence of cord compression and acute neurological symptom onset who underwent initial, immediate surgery within 3 days of diagnosis had fewer long-term neurological deficits than surgical patients who underwent initial trials of chemotherapy. Thus, acute decompression may provide benefit in carefully selected patients with acute neurological deficits and cord compression on imaging.


Subject(s)
Neuroblastoma , Spinal Cord Neoplasms , Spinal Neoplasms , Humans , Child , Retrospective Studies , Neuroblastoma/diagnostic imaging , Neuroblastoma/surgery , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/surgery , Spine
16.
bioRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260662

ABSTRACT

The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.

17.
Childs Nerv Syst ; 29(4): 531-3, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23423659

ABSTRACT

INTRODUCTION: In patients with programmable CSF shunt valves, the risk of unintentional valve adjustment associated with the environmental magnetic influence is ever present. We tested whether the iPad 3 with Smart Cover is capable of changing the setting of individual programmable valves ex vivo using direct fluoroscopic visualization. METHODS: The following valves were tested: Strata NSC Adjustable Pressure Valve, Strata NSC Burr Hole Valve, Strata II small valve, Sophysa Polaris model SPV, Aesculap valve proGAV, and Codman Certas Programmable Valve. The left front edge of the iPad 3 with Smart Cover was found to have the strongest magnetic flux, measuring approximately 1,200 G and was moved linearly directly over the tested valve and then parallel to the first path at approximately 30 cm/s. Also, this area was rotated once at varying distances above the valve at approximately 1 rad/s. RESULTS: Almost all shunt valves were immune to reprogramming by the iPad 3 at varying distances (including direct contact) except for the Strata II small valve, where rotating the peak flux location 4 mm above the valve changed the valve pressure settings every time. CONCLUSIONS: The iPad 3 can change pressure settings of the Strata II small valve at a distance comparable to the thickness of certain regions of the scalp. Although the specific rotational motion described here may be uncommon in real life, it is nevertheless recommended that children with hydrocephalus, caregivers, educators, and therapists are informed of the now-apparent risks of close contact with this increasingly popular technology.


Subject(s)
Cerebrospinal Fluid Shunts/instrumentation , Computers, Handheld , Equipment Design , Equipment Failure , Humans , Hydrocephalus/surgery , Magnetics/instrumentation
18.
Proc Natl Acad Sci U S A ; 107(49): 21170-5, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-21078987

ABSTRACT

The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.


Subject(s)
Cerebral Cortex/physiology , Consciousness/drug effects , Electroencephalography/methods , Propofol/pharmacology , Anesthesia/methods , Cerebral Cortex/drug effects , Electrophysiological Phenomena , Evoked Potentials, Somatosensory/drug effects , Humans , Thalamus/drug effects , Thalamus/physiology
19.
J Neurosurg Pediatr ; 32(3): 351-357, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37327147

ABSTRACT

OBJECTIVE: Tuberous sclerosis is a rare genetic condition caused by TSC1 or TSC2 mutations that can be inherited, sporadic, or the result of somatic mosaicism. Subependymal giant-cell astrocytoma (SEGA) is a major diagnostic feature of tuberous sclerosis complex (TSC). This study aimed to present a series of cases in which a pathological diagnosis of SEGA was not diagnostic of tuberous sclerosis. METHODS: The authors retrospectively reviewed a clinical case series of 5 children who presented with a SEGA tumor to Johns Hopkins All Children's Hospital and St. Louis Children's Hospital between 2010 and 2022 and whose initial genetic workup was negative for tuberous sclerosis. All patients were treated with craniotomy for SEGA resection. TSC genetic testing was performed on all SEGA specimens. RESULTS: The children underwent open frontal craniotomy for SEGA resection from the ages of 10 months to 14 years. All cases demonstrated the classic imaging features of SEGA. Four were centered at the foramen of Monro and 1 in the occipital horn. One patient presented with hydrocephalus, 1 with headaches, 1 with hand weakness, 1 with seizures, and 1 with tumor hemorrhage. Somatic TSC1 mutation was present in the SEGA tumors of 2 patients and TSC2 mutation in 1 patient. Germline TSC mutation testing was negative for all 5 cases. No patient had other systemic findings of tuberous sclerosis on ophthalmological, dermatological, neurological, renal, or cardiopulmonary assessments and thus did not meet the clinical criteria for tuberous sclerosis. The average follow-up was 6.7 years. Recurrence was noted in 2 cases, in which 1 patient underwent radiosurgery and 1 was started on a mammalian target of rapamycin (mTOR) inhibitor (rapamycin). CONCLUSIONS: There may be intracranial implications of somatic mosaicism associated with tuberous sclerosis. Children who are diagnosed with SEGA do not necessarily have a diagnosis of tuberous sclerosis. Tumors may carry a TSC1 or TSC2 mutation, but germline testing can be negative. These children should continue to be followed with serial cranial imaging for tumor progression, but they may not require the same long-term monitoring as patients who are diagnosed with germline TSC1 or TSC2 mutations.

20.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077010

ABSTRACT

Functional MRI (fMRI) data are severely distorted by magnetic field (B0) inhomogeneities which currently must be corrected using separately acquired field map data. However, changes in the head position of a scanning participant across fMRI frames can cause changes in the B0 field, preventing accurate correction of geometric distortions. Additionally, field maps can be corrupted by movement during their acquisition, preventing distortion correction altogether. In this study, we use phase information from multi-echo (ME) fMRI data to dynamically sample distortion due to fluctuating B0 field inhomogeneity across frames by acquiring multiple echoes during a single EPI readout. Our distortion correction approach, MEDIC (Multi-Echo DIstortion Correction), accurately estimates B0 related distortions for each frame of multi-echo fMRI data. Here, we demonstrate that MEDIC's framewise distortion correction produces improved alignment to anatomy and decreases the impact of head motion on resting-state functional connectivity (RSFC) maps, in higher motion data, when compared to the prior gold standard approach (i.e., TOPUP). Enhanced framewise distortion correction with MEDIC, without the requirement for field map collection, furthers the advantage of multi-echo over single-echo fMRI.

SELECTION OF CITATIONS
SEARCH DETAIL