Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Physiol Rev ; 102(1): 7-60, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33880962

ABSTRACT

The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.


Subject(s)
Exocytosis/physiology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology , Testis/cytology , Animals , Biological Evolution , Humans , Male , Mammals/physiology , Spermatozoa/cytology
2.
Proc Natl Acad Sci U S A ; 120(42): e2305712120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812723

ABSTRACT

Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.


Subject(s)
Adenylate Kinase , Infertility , Semen , Animals , Cattle , Female , Male , Mice , Pregnancy , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Fertility , Mammals , Semen/metabolism , Semen Analysis , Sperm Motility , Spermatozoa/metabolism
3.
Cell Mol Life Sci ; 80(1): 11, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534181

ABSTRACT

The acquisition of fertilizing ability by mammalian spermatozoa, known as "capacitation," includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.


Subject(s)
Semen , Sperm Capacitation , Animals , Mice , Male , Female , Sperm Capacitation/physiology , Disease Models, Animal , Semen/metabolism , Energy Metabolism , Spermatozoa/metabolism , Mammals/metabolism , Adenosine Triphosphate/metabolism
4.
Reprod Domest Anim ; 58(10): 1439-1447, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37603017

ABSTRACT

The identification of different morphometric patterns of spermatozoa serves as a basis for improving our understanding of the diversity in an ejaculate and to relate them to the potential fertility of males. In this study, we aimed to examine the semen subpopulation structure, following dilution in semen of extenders, using a mathematical approach a possible application to fertility analyses. Ten sexually mature Bos taurus bulls were randomly allotted to one of three groups: (1) Tris-citric acid-egg yolk extender (Tris-EY); (2) commercial egg yolk extender OptiXcell® and (3) commercial egg yolk extender Triladyl®. The results showed significant differences (p < .05) between extenders in terms of values for head size and head shape variables of individual sperm, indicating an influence of extender composition. Sperm head width was found to significantly differ (p < .05) according to the extender, decreasing in the following order: OptiXcell® (4.836 ± 0.017 µm), Triladyl® (4.695 ± 0.012 µm) and Tris-EY (4.638 ± 0.010 µm). Principal component analysis allowed us to identify two subpopulations in OptiXcell®, and three subpopulations were each found in Triladyl® and Tris-EY. Overall, we observed significant differences between sperm subpopulations within each extender (p < .05), with differences in sperm head size and shape between bovine species that can be related to functionality and fertility capabilities.

5.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003282

ABSTRACT

This study was designed to analyze changes in the spermatozoa of three species of Phodopus hamsters incubated under different conditions. Cauda epididymal sperm were incubated for 4 h in modified Tyrode's medium containing albumin, lactate, pyruvate, and Hepes (mTALP-H), in the same medium with the addition of bicarbonate (mTALP-BH), or with bicarbonate and 20 ng/mL of progesterone (mTALP-BH+P4). Media with bicarbonate are believed to promote capacitation in rodent species. Sperm motility, viability, capacitation patterns, and kinematics were assessed at different times. Capacitation in live cells was quantified after staining with Hoechst 33258 and chlortetracycline. Patterns believed to correspond to non-capacitated cells (F pattern), capacitated, acrosome-intact cells (B pattern), and acrosome-reacted cells (AR pattern) were recognized. Kinematics were examined via computer-assisted sperm analysis (CASA). The results showed a decrease in total motility in all three species in different media, with a sharp decrease in progressive motility in bicarbonate-containing media (without or with progesterone), suggesting hyperactivated motion. However, none of the other signs of hyperactivation described in rodents (i.e., decrease in STR or LIN, together with an increase in ALH) were observed. F pattern cells diminished with time in all media and were generally lower in P. roborovskii and higher in P. campbelli. B pattern cells increased in mTALP-BH media in all species. Progesterone did not enhance the percentage of B pattern cells. Finally, AR pattern cells increased in all species incubated in different media, showing the highest percentage in P. roborovskii and the lowest in P. campbelli. Comparisons between media revealed that there were higher percentages of F pattern cells and lower percentages of B pattern cells over time in medium without bicarbonate (mTALP-H) in comparison to media containing bicarbonate (mTALP-BH; mTALP-BH+P4). Overall, changes consistent with the acquisition of capacitation and development of hyperactivated motility were found; however, further studies are required to better characterize media necessary to support the pathways involved in these processes in Phodopus species.


Subject(s)
Phodopus , Progesterone , Cricetinae , Animals , Male , Bicarbonates/pharmacology , Sperm Capacitation/physiology , Biomechanical Phenomena , Sperm Motility/physiology , Semen , Spermatozoa/physiology , Albumins , Lactic Acid , Pyruvic Acid
6.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958937

ABSTRACT

Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.


Subject(s)
Chromatin , Methylene Blue , Male , Female , Mice , Animals , Chromatin/genetics , DNA Fragmentation , Chromomycin A3 , Semen , Spermatozoa , DNA , Aniline Compounds
7.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499575

ABSTRACT

In order to sustain motility and prepare for fertilization, sperm require energy. The characterization of sperm ATP production and usage in mouse species revealed substantial differences in metabolic pathways that can be differentially affected by capacitation. Moreover, spermatozoa encounter different environments with varying viscoelastic properties in the female reproductive tract. Here, we examine whether viscosity affects sperm ATP levels and kinematics during capacitation in vitro. Sperm from three mouse species (Mus musculus, M. spretus, M. spicilegus) were incubated under capacitating conditions in a modified Tyrode's medium containing bicarbonate, glucose, pyruvate, lactate, and bovine serum albumin (mT-BH) or in a bicarbonate-free medium as a non-capacitating control. Viscosity was increased with the inclusion of polyvinylpyrrolidone. ATP was measured with a bioluminescence kit, and kinematics were examined with a computer-aided sperm analysis system. In M. musculus sperm, ATP declined during capacitation, but no differences were found between non-capacitating and capacitating sperm. In contrast, in M. spretus and M. spicilegus, ATP levels decreased in capacitating sperm. Increasing viscosity in the medium did not modify the timing or proportion of cells undergoing capacitation but did result in additional time- and concentration-dependent decreases in ATP in M. spretus and M. spicilegus under capacitating conditions. Additionally, increased viscosity altered both velocity and trajectory descriptors. The limited impact of capacitation and higher viscosity on M. musculus sperm ATP and kinematics could be related to the low intensity of postcopulatory sexual selection in this species. Responses seen in the other two species could be linked to the ability of their sperm to perform better under enhanced selective pressures.


Subject(s)
Semen , Sperm Capacitation , Animals , Male , Female , Mice , Semen/metabolism , Spermatozoa/metabolism , Energy Metabolism , Adenosine Triphosphate/metabolism , Sperm Motility
8.
BMC Evol Biol ; 20(1): 67, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513118

ABSTRACT

BACKGROUND: Cysteine-RIch Secretory Proteins (CRISP) are expressed in the reproductive tract of mammalian males and are involved in fertilization and related processes. Due to their important role in sperm performance and sperm-egg interaction, these genes are likely to be exposed to strong selective pressures, including postcopulatory sexual selection and/or male-female coevolution. We here perform a comparative evolutionary analysis of Crisp genes in mammals. Currently, the nomenclature of CRISP genes is confusing, as a consequence of discrepancies between assignments of orthologs, particularly due to numbering of CRISP genes. This may generate problems when performing comparative evolutionary analyses of mammalian clades and species. To avoid such problems, we first carried out a study of possible orthologous relationships and putative origins of the known CRISP gene sequences. Furthermore, and with the aim to facilitate analyses, we here propose a different nomenclature for CRISP genes (EVAC1-4, "EVolutionarily-analyzed CRISP") to be used in an evolutionary context. RESULTS: We found differing selective pressures among Crisp genes. CRISP1/4 (EVAC1) and CRISP2 (EVAC2) orthologs are found across eutherian mammals and seem to be conserved in general, but show signs of positive selection in primate CRISP1/4 (EVAC1). Rodent Crisp1 (Evac3a) seems to evolve under a comparatively more relaxed constraint with positive selection on codon sites. Finally, murine Crisp3 (Evac4), which appears to be specific to the genus Mus, shows signs of possible positive selection. We further provide evidence for sexual selection on the sequence of one of these genes (Crisp1/4) that, unlike others, is thought to be exclusively expressed in male reproductive tissues. CONCLUSIONS: We found differing selective pressures among CRISP genes and sexual selection as a contributing factor in CRISP1/4 gene sequence evolution. Our evolutionary analysis of this unique set of genes contributes to a better understanding of Crisp function in particular and the influence of sexual selection on reproductive mechanisms in general.


Subject(s)
Evolution, Molecular , Mammals/genetics , Seminal Plasma Proteins/genetics , Animals , Female , Male , Mice , Reproduction/genetics , Spermatozoa/metabolism
9.
Int J Mol Sci ; 21(10)2020 05 24.
Article in English | MEDLINE | ID: mdl-32456358

ABSTRACT

Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.


Subject(s)
Cell Differentiation , Spermatogenesis/physiology , Actins/metabolism , Animals , Humans , Male , Mammals/metabolism , Mammals/physiology , Microtubules/metabolism , Protein Transport , Spermatozoa
10.
Biol Reprod ; 100(2): 420-428, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30203065

ABSTRACT

ATP supply is essential for sperm performance and increases in ATP content coevolve with enhanced sperm swimming velocity as a response to sperm competition in rodents. ATP content is the balance between production and consumption but, although ATP production has received much attention, little is known about ATP consumption. The rate of ATP consumption is crucial for the propagation of the flagellar wave, becoming a main determinant of the time and distance sperm could move before exhausting their reserves. A high yield in distance per unit of ATP consumed (efficiency) could provide advantages in sperm competition. We characterized sperm ATP consumption rate in a group of mouse species with different sperm competition levels to understand its impact on swimming velocity, duration, and yield of sperm ATP reserves. Interspecific comparisons revealed that sperm of species with higher sperm competition levels had high ATP consumption rates and faster swimming velocity. Moreover, sperm that consumed ATP at a faster rate swam more efficiently, since they were able to cover more distance per unit of ATP consumed. Our results suggest that by coupling the advantages of higher ATP turnover rates to increased efficiency of ATP expenditure, sperm would respond to increasingly competitive environments while maintaining a positive ATP balance.


Subject(s)
Energy Metabolism/physiology , Sperm Motility/physiology , Spermatozoa/physiology , Adenosine Triphosphate/metabolism , Animals , Male , Mice , Species Specificity
11.
Reprod Domest Anim ; 54 Suppl 4: 14-21, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31625240

ABSTRACT

Sperm competition is a powerful selective force that has influenced many reproductive traits in males and females although additional evolutionary explanations may help to understand the diversity of mammalian reproduction. Sperm morphology varies considerably in mammals with extreme examples in several rodent lineages in which a wide range of sizes and complex head morphologies have been identified. Mammalian spermatozoa also differ in function, with swimming velocity and trajectory showing much divergence. Underlying processes mediating function have received little attention so far, but differences in timing and proportion of sperm undergoing capacitation or acrosomal exocytosis may be related to variation in signalling processes. Furthermore, energy required for sperm functions (such as motion, signalling and overall maintenance of cell integrity) can be produced and consumed, following different patterns among species and this could be the result of several selective forces. A more thorough understanding of the diversity in structure and function of sperm cells, and underlying selective forces, may help us develop better methods to assess them taking into account particulars and generalities of sperm form and performance. Such tests could then become more reliable in estimations of the impact of cryopreservation or effect of changes in the environment and their relevance for fertility.


Subject(s)
Mammals/physiology , Spermatozoa/cytology , Spermatozoa/physiology , Acrosome/physiology , Animals , Biological Evolution , Female , Fertility , Male , Sperm Capacitation , Sperm Motility/physiology
12.
Mol Biol Evol ; 34(6): 1403-1416, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28333336

ABSTRACT

Sexual selection is the pervasive force underlying the dramatic divergence of sperm form and function. Although it has been demonstrated that testis gene expression evolves rapidly, exploration of the proteomic basis of sperm diversity is in its infancy. We have employed a whole-cell proteomics approach to characterize sperm divergence among closely related Mus species that experience different sperm competition regimes and exhibit pronounced variation in sperm energetics, motility and fertilization capacity. Interspecific comparisons revealed significant abundance differences amongst proteins involved in fertilization capacity, including those that govern sperm-zona pellucida interactions, axoneme components and metabolic proteins. Ancestral reconstruction of relative testis size suggests that the reduction of zona pellucida binding proteins and heavy-chain dyneins was associated with a relaxation in sperm competition in the M. musculus lineage. Additionally, the decreased reliance on ATP derived from glycolysis in high sperm competition species was reflected in abundance decreases in glycolytic proteins of the principle piece in M. spretus and M. spicilegus. Comparison of protein abundance and stage-specific testis expression revealed a significant correlation during spermatid development when dynamic morphological changes occur. Proteins underlying sperm diversification were also more likely to be subject to translational repression, suggesting that sperm composition is influenced by the evolution of translation control mechanisms. The identification of functionally coherent classes of proteins relating to sperm competition highlights the utility of evolutionary proteomic analyses and reveals that both intensified and relaxed sperm competition can have a pronounced impact on the molecular composition of the male gamete.


Subject(s)
Spermatogenesis/genetics , Spermatozoa/physiology , Animals , Biological Evolution , Fertilization , Germ Cells , Male , Mating Preference, Animal , Mice , Proteins/metabolism , Proteomics/methods , Species Specificity , Sperm-Ovum Interactions , Spermatozoa/metabolism , Testis/metabolism , Zona Pellucida
13.
Mol Biol Evol ; 33(1): 174-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26429923

ABSTRACT

Protamines have a crucial role in male fertility. They are involved in sperm chromatin packaging and influence the shape of the sperm head and, hence, are important for sperm performance. Protamine structure is basic with numerous arginine-rich DNA-binding domains. Postcopulatory sexual selection is thought to play an important role in protamine sequence evolution and expression. Here, we analyze patterns of evolution and sexual selection (in the form of sperm competition) acting on protamine 1 gene sequence in 237 mammalian species. We assessed common patterns as well as differences between the major mammalian subclasses (Eutheria, Metatheria) and clades. We found that a high arginine content in protamine 1 associates with a lower sperm head width, which may have an impact on sperm swimming velocity. Increase in arginine content in protamine 1 across mammals appears to take place in a way consistent with sexual selection. In metatherians, increase in sequence length correlates with sexual selection. Differences in selective pressures on sequences and codon sites were observed between mammalian clades. Our study revealed a complex evolutionary pattern of protamine 1, with different selective constraints, and effects of sexual selection, between mammalian groups. In contrast, the effect of arginine content on head shape, and the possible involvement of sperm competition, was identified across all mammals.


Subject(s)
Mammals/genetics , Protamines/chemistry , Protamines/genetics , Spermatozoa/physiology , Amino Acid Sequence , Animals , Arginine/chemistry , Conserved Sequence , Evolution, Molecular , Male , Phylogeny
14.
Reproduction ; 154(4): 341-354, 2017 10.
Article in English | MEDLINE | ID: mdl-28676531

ABSTRACT

Whereas a broad link exists between nucleotide substitutions in the mitochondrial genome (mtDNA) and a range of metabolic pathologies, exploration of the effect of specific mtDNA genotypes is on-going. Mitochondrial DNA mutations are of particular relevance for reproductive traits, since they are expected to have profound effects on male specific processes as a result of the strict maternal inheritance of mtDNA. Sperm motility is crucially dependent on ATP in most systems studied. However, the importance of mitochondrial function in the production of the ATP necessary for sperm function remains uncertain. In this study, we test the effect of mtDNA polymorphisms upon mouse sperm performance and bioenergetics by using five conplastic inbred strains that share the same nuclear background while differing in their mitochondrial genomes. We found that, while genetic polymorphisms across distinct mtDNA haplotypes are associated with modification in sperm progressive velocity, this effect is not related to ATP production. Furthermore, there is no association between the number of mtDNA polymorphisms and either (a) the magnitude of sperm performance decrease, or (b) performance response to specific inhibition of the main sperm metabolic pathways. The observed variability between strains may be explained in terms of additive effects of single nucleotide substitutions on mtDNA coding sequences, which have been stabilized through genetic drift in the different laboratory strains. Alternatively, the decreased sperm performance might have arisen from the disruption of the nuclear DNA/mtDNA interactions that have coevolved during the radiation of Mus musculus subspecies.


Subject(s)
Adenosine Triphosphate/metabolism , DNA, Mitochondrial/genetics , Glycolysis/drug effects , Oxidative Phosphorylation/drug effects , Polymorphism, Single Nucleotide , Spermatozoa/drug effects , Uncoupling Agents/pharmacology , Animals , DNA, Mitochondrial/metabolism , Glycolysis/genetics , Haplotypes , Male , Mice, Inbred C57BL , Phenotype , Species Specificity , Sperm Count , Sperm Motility/drug effects , Spermatozoa/metabolism
15.
J Biol Chem ; 290(33): 20613-26, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26048989

ABSTRACT

Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).


Subject(s)
Adenosine Triphosphate/biosynthesis , Glycolysis , Oxidative Phosphorylation , Sperm Motility , Animals , Male , Mice , Oxygen Consumption , Species Specificity
16.
BMC Evol Biol ; 16: 21, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26801756

ABSTRACT

BACKGROUND: Protamines are sperm nuclear proteins with a crucial role in chromatin condensation. Their function is strongly linked to sperm head morphology and male fertility. Protamines appear to be affected by a complex pattern of selective constraints. Previous studies showed that sexual selection affects protamine coding sequence and expression in rodents. Here we analyze selective constraints and post-copulatory sexual selection acting on protamine 2 (Prm2) gene sequences of 53 species of primates and rodents. We focused on possible differences in selective constraints between these two clades and on the two functional domains of PRM2 (cleaved- and mature-PRM2). We also assessed if and how changes in Prm2 coding sequence may affect sperm head dimensions. RESULTS: The domain of Prm2 that is cleaved off during binding to DNA (cleaved-Prm2) was found to be under purifying selection in both clades, whereas the domain that remains bound to DNA (mature-Prm2) was found to be positively selected in primates and under relaxed constraint in rodents. Changes in cleaved-Prm2 coding sequence are significantly correlated to sperm head width and elongation in rodents. Contrary to expectations, a significant effect of sexual selection was not found on either domain or clade. CONCLUSIONS: Mature-PRM2 may be free to evolve under less constraint due to the existence of PRM1 as a more conserved and functionally redundant copy. The cleaved-PRM2 domain seems to play an important role in sperm head shaping. However, sexual selection on its sequence may be difficult to detect until it is identified which sperm head phenotype (shape and size) confers advantages for sperm performance in different mammalian clades.


Subject(s)
Protamines/genetics , Selection, Genetic , Animals , Biological Evolution , Male , Mating Preference, Animal , Primates , Rodentia , Sperm Head/physiology , Spermatozoa/physiology
17.
Proc Biol Sci ; 283(1826): 20152708, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26936246

ABSTRACT

Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.


Subject(s)
DNA Fragmentation , Mice/physiology , Spermatozoa/physiology , Animals , Male , Species Specificity
18.
Biol Reprod ; 95(1): 25, 2016 07.
Article in English | MEDLINE | ID: mdl-27281707

ABSTRACT

Rodents have spermatozoa with features not seen in other species. Sperm heads in many rodent species bear one or more apical extensions known as "hooks." The process by which hooks have evolved, together with their adaptive significance, are still controversial issues. In order to improve our understanding of the biological meaning of these sperm head adaptations, we analyzed hook curvature angles, hook length, and overall hook shape in muroid rodents by using geometric morphometrics. We also searched for relationships between hook design and measurements of intermale competition to assess whether postcopulatory sexual selection was an important selective force driving changes in this sperm structure. Finally, we sought possible links between aspects of sperm hook design and sperm velocity as a measure of sperm performance. Results showed that one hook curvature angle is under strong selective pressure. Similarly, hook length appears to be strongly selected by sexual selection, with this selective force also exhibiting a stabilizing role reducing intermale variation in this trait. The adaptive significance of changes in hook structure was supported by the finding that there are strong and significant covariations between hook dimensions and shape and between hook design and sperm swimming velocity. Overall, this study strongly suggests that postcopulatory sexual selection has an important effect on the design of the sperm head that, in turn, is important for enhancing sperm velocity, a function crucial to reaching the vicinity of the female gamete and winning fertilizations under competitive situations.


Subject(s)
Biological Evolution , Rodentia , Sperm Head , Spermatozoa/cytology , Animals , Cell Shape/physiology , Male , Mating Preference, Animal/physiology
19.
Biol Reprod ; 93(3): 64, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26157072

ABSTRACT

Sperm viability, acrosome integrity, motility, and swimming velocity are determinants of male fertility and exhibit an extreme degree of variation among closely related species. Many of these sperm parameters are associated with sperm ATP content, which has led to predictions of trade-offs between ATP content and sperm motility and velocity. Selective pressures imposed by sperm competition have been proposed as evolutionary causes of this pattern of diversity in sperm traits. Here, we examine variation in sperm viability, acrosome integrity, motility, swimming velocity, and ATP content over time, among 18 species of closely related muroid rodents, to address the following questions: (a) Do sperm from closely related species vary in ATP content after a period of incubation? (b) Are these differences in ATP levels related to differences in other sperm traits? (c) Are differences in ATP content and sperm performance over time explained by the levels of sperm competition in these species? Our results revealed a high degree of interspecific variability in changes in sperm ATP content, acrosome integrity, sperm motility and swimming velocity over time. Additionally, species with high sperm competition levels were able to maintain higher levels of sperm motility and faster sperm swimming velocity when they were incubated under conditions that support sperm survival. Furthermore, we show that the maintenance of such levels of sperm performance is correlated with the ability of sperm to sustain high concentrations of intracellular ATP over time. Thus, sperm competition may have an important role maximizing sperm metabolism and performance and, ultimately, the fertilizing capacity of spermatozoa.


Subject(s)
Adenosine Triphosphate/pharmacology , Muridae , Spermatozoa/drug effects , Acrosome/drug effects , Animals , Arvicolinae , Dose-Response Relationship, Drug , Germ Cells/drug effects , Guinea Pigs , Male , Mice , Organ Size , Rats , Species Specificity , Sperm Count , Sperm Motility/drug effects , Testis/anatomy & histology
20.
Mol Hum Reprod ; 21(2): 146-56, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25304980

ABSTRACT

PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition.


Subject(s)
Primates/physiology , Rodentia/physiology , Animals , Biological Evolution , Erythrocebus patas , Gorilla gorilla , Humans , Macaca mulatta , Macaca nemestrina , Male , Pan paniscus , Pan troglodytes , Pongo pygmaeus , Primates/classification , Primates/genetics , Rodentia/classification , Rodentia/genetics , Spermatozoa/metabolism , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL