Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 576(7786): 274-280, 2019 12.
Article in English | MEDLINE | ID: mdl-31802000

ABSTRACT

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Subject(s)
MicroRNAs/genetics , Neoplasms, Germ Cell and Embryonal/genetics , DEAD-box RNA Helicases/genetics , DNA Topoisomerases, Type I/genetics , Humans , Mutation , Neoplasms, Germ Cell and Embryonal/diagnosis , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Recurrence , Ribonuclease III/genetics
2.
Nature ; 559(7715): E11, 2018 07.
Article in English | MEDLINE | ID: mdl-29950716

ABSTRACT

In this Letter, the sentence beginning "This work was funded…." in the Acknowledgements should have read "CPRIT (RP140105) to J.C.R." rather than "CPRIT (RP150445) to J.C.R." This error has been corrected online.

3.
Nature ; 555(7696): 387-391, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29513652

ABSTRACT

Ewing sarcoma is an aggressive paediatric cancer of the bone and soft tissue. It results from a chromosomal translocation, predominantly t(11;22)(q24:q12), that fuses the N-terminal transactivation domain of the constitutively expressed EWSR1 protein with the C-terminal DNA binding domain of the rarely expressed FLI1 protein. Ewing sarcoma is highly sensitive to genotoxic agents such as etoposide, but the underlying molecular basis of this sensitivity is unclear. Here we show that Ewing sarcoma cells display alterations in regulation of damage-induced transcription, accumulation of R-loops and increased replication stress. In addition, homologous recombination is impaired in Ewing sarcoma owing to an enriched interaction between BRCA1 and the elongating transcription machinery. Finally, we uncover a role for EWSR1 in the transcriptional response to damage, suppressing R-loops and promoting homologous recombination. Our findings improve the current understanding of EWSR1 function, elucidate the mechanistic basis of the sensitivity of Ewing sarcoma to chemotherapy (including PARP1 inhibitors) and highlight a class of BRCA-deficient-like tumours.


Subject(s)
BRCA1 Protein/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Nucleic Acid Conformation , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Recombinational DNA Repair , Sarcoma, Ewing/genetics , Transcription, Genetic , BRCA1 Protein/metabolism , Cell Line, Tumor , DNA Damage , Humans , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/metabolism
4.
J Cell Mol Med ; 19(4): 770-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25656427

ABSTRACT

Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5(-/-) mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5(-/-) mice fed a hypercholesterolaemic diet. HC feeding in Lrp5(-/-) mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/ß-CATENIN signalling proteins were down-regulated in HC Lrp5(-/-) mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.


Subject(s)
Down-Regulation , Dyslipidemias/genetics , Lipids/analysis , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Wnt Signaling Pathway/genetics , Animals , Aorta/metabolism , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Dyslipidemias/blood , Dyslipidemias/etiology , Gene Expression , Hypercholesterolemia/blood , Hypercholesterolemia/etiology , Hypercholesterolemia/genetics , Immunohistochemistry , Lipids/blood , Low Density Lipoprotein Receptor-Related Protein-1 , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-5/deficiency , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , beta Catenin/metabolism
5.
J Cell Mol Med ; 18(2): 314-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24266894

ABSTRACT

Molecular changes involved in cell differentiation are only partially known. Circulating inflammatory cells need to differentiate to perform specialized functions in target tissues. Here, we hypothesized that low-density lipoprotein receptor-related protein 5 (LRP5) is involved, through its participation in the canonical Wnt/ß-catenin signalling, in the differentiation process of monocytic cells. To this aim, we characterized differentiation mechanisms of HL60 cells and primary human monocytes. We show that silencing the LRP5 gene increased differentiation of HL60 cells and human monocytes, suggesting that LRP5 signalling abrogates differentiation. We demonstrate that the mechanisms behind this blockade include sequestration of ß-catenin at the cellular membrane, inhibition of the Wnt signalling and increase of apoptosis. We further demonstrate the involvement of LRP5 and the Wnt/ß-catenin signalling in the process because cellular differentiation can be rescued by the addition of downstream Wnt target genes to the monocytic cells.


Subject(s)
Cell Differentiation/genetics , Cell Membrane/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Monocytes/metabolism , Wnt Proteins/metabolism , Apoptosis , Gene Expression Regulation , Genetic Complementation Test , HL-60 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-5/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Monocytes/cytology , Primary Cell Culture , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
6.
Adv Biol (Weinh) ; : e2300198, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062868

ABSTRACT

Brain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS, is presented. An important finding is that astrocytes also change in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. GEM bMPS are electro-chemically active and show different patterns of calcium staining and flux. Synaptic vesicles and terminals observed by electron microscopy are also present. No significant changes in neuronal differentiation are observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different cell lines. These results have the potential to significantly improve functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.

7.
bioRxiv ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37745321

ABSTRACT

Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain. Most of the models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), we present an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS. An important finding is that astrocytes not only increased in number but also changed in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. We demonstrate oligodendrocyte and astrocyte enrichment in GEM bMPS using a variety of complementary methods. We found that GEM bMPS are electro-chemically active and showed different patterns of Ca +2 staining and flux. Synaptic vesicles and terminals observed by electron microscopy were also present. No significant changes in neuronal differentiation were observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different iPSC lines. Our results have the potential to significantly improve in vivo-like functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.

8.
Front Artif Intell ; 6: 1116870, 2023.
Article in English | MEDLINE | ID: mdl-36925616

ABSTRACT

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

9.
Eur Heart J ; 32(22): 2841-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21398644

ABSTRACT

AIMS: Atherosclerosis plaque development includes infiltration of inflammatory cells, accumulation of lipids and fibrous cap formation. Low-density lipoprotein receptor-related protein 1 (LRP1) is expressed on atherosclerotic lesions associated with macrophages and vascular smooth muscle cells. The aim of this work is to analyse the role in atherosclerosis lesion progression of another member of the LDL receptor protein family, low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor with Frizzled known to activate the Wnt signalling pathway in several cell types. METHODS AND RESULTS: LRP5 is expressed in human vascular and innate inflammatory cells. LRP5 is transcriptionally regulated by aggregated LDL (agLDL), participating in the lipid uptake and transformation of macrophages into foam cells, a critical step in atherosclerosis progression. AgLDL-treated macrophages show up-regulated expression of ß-catenin, LEF1, c-jun, cyclinD1, bone morphogenetic protein 2 (BMP2), and osteopontin (OPN), proteins and targets of the Wnt signalling pathway, whereas LRP5-silenced macrophages show a significant down-regulation of OPN and BMP2 expression. Furthermore, LRP5-deficient macrophages exhibit an impaired migration both in wound-repair and modified Boyden chambers models. CONCLUSION: These results demonstrate the involvement of LRP5 in the innate inflammatory reaction to lipid infiltration in atherosclerosis.


Subject(s)
Atherosclerosis/etiology , Cell Movement/physiology , Lipid Metabolism/physiology , Low Density Lipoprotein Receptor-Related Protein-5/physiology , Macrophages/metabolism , Wnt Signaling Pathway/physiology , Apoptosis/physiology , Atherosclerosis/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/physiology , Cell Survival/physiology , Cells, Cultured , Foam Cells/physiology , Humans , Lipoproteins, LDL/pharmacology , Low Density Lipoprotein Receptor-Related Protein-5/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Monocytes/metabolism , Osteopontin/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology
10.
Front Cell Neurosci ; 16: 1094291, 2022.
Article in English | MEDLINE | ID: mdl-36744062

ABSTRACT

Introduction: Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system (CNS). Although OLs can be differentiated from human-induced pluripotent stem cells (hiPSCs), the in vitro modeling of axon myelination in human cells remains challenging. Brain microphysiological systems (bMPS, e.g. organoids) are complex three-dimensional (3D) cultures that offer an ideal system to study this process as OLs differentiate in a more in vivo-like environment; surrounded by neurons and astrocytes, which support the myelination of axons. Methods: Here, we take advantage of CRISPR/Cas9 technology to generate a hiPSC line in which proteolipid protein 1 (PLP1), an OLs marker, is tagged with super-fold GFP (sfGFP). While generating the PLP1-sfGFP reporter, we used reverse transfection and obtained higher Knock-In (KI) efficiency compared to forward transfection (61-72 vs. 46%). Results: After validation of the KI and quality control of the PLP1-sfGFP line, selected clones were differentiated into bMPS, and the fidelity, specificity, and function of the tagged PLP protein were verified in this model. We tracked different stages of oligodendrogenesis in the verified lines based on PLP1-sfGFP+ cells' morphology, and the presence of PLP1-sfGFP surrounding axons during bMPS' differentiation. Finally, we challenged the bMPS with cuprizone and quantified changes in both the percentage of PLP1-sfGFP expressing cells and the intensity of GFP expression. Discussion: This work demonstrates an efficient method for generating hiPSC KI lines and the description of a new 3D model to study OL differentiation, migration, and maturation both during in vitro neurodevelopment as well as in response to environmental chemicals or disease-associated stressors.

11.
Sci Adv ; 8(33): eabq5031, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35977026

ABSTRACT

Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. However, conventional MEAs, initially designed for monolayer cultures, offer limited recording contact area restricted to the bottom of the 3D organoids. Inspired by the shape of electroencephalography caps, we developed miniaturized wafer-integrated MEA caps for organoids. The optically transparent shells are composed of self-folding polymer leaflets with conductive polymer-coated metal electrodes. Tunable folding of the minicaps' polymer leaflets guided by mechanics simulations enables versatile recording from organoids of different sizes, and we validate the feasibility of electrophysiology recording from 400- to 600-µm-sized organoids for up to 4 weeks and in response to glutamate stimulation. Our studies suggest that 3D shell MEAs offer great potential for high signal-to-noise ratio and 3D spatiotemporal brain organoid recording.

12.
Cancer Lett ; 425: 101-115, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29608984

ABSTRACT

Molecular targeted compounds are emerging as a strategy to improve classical chemotherapy. Herein, we describe that using low dose of the multikinase inhibitor sorafenib improves cyclophosphamide antitumor activity by inhibiting angiogenesis, metastasis and promoting tumor healing in MDA-MB231 xenografts and the 4T1-12B syngeneic breast cancer metastasis model. Mechanistic studies in MDA-MB231 cells revealed that alkylation upregulates inflammatory genes/proteins such as COX-2, IL8, CXCL2 and MMP1 in a MEK1/2-ERK1/2-dependent manner. These proteins enrich the secretome of cancer cells, stimulating cell invasion and angiogenesis via autocrine and paracrine mechanisms. Sorafenib inhibits MEK1/2-ERK1/2 pathway thereby decreasing inflammatory genes and mitigating cell invasion and angiogenesis at basal and alkylation-induced conditions whereas NRF2 and ER stress pathways involved in alkylation survival are not affected. In non-invasive/non-angiogenic breast cancer cells (SKBR3 and MCF7), alkylation did not elicit inflammatory responses with the only sorafenib effect being ERK1/2-independent ROS-dependent cytotoxicity when using higher drug concentrations. In summary, our data show that alkylating agents may elicit inflammatory responses that seems to contribute to malignant progression in specific breast cancer cells. Identifying and targeting drivers of this phenotype may offer opportunities to optimize combined drug regimens between classical chemotherapeutics and targeted agents.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Breast Neoplasms/drug therapy , Cyclophosphamide/administration & dosage , Neovascularization, Pathologic/drug therapy , Sorafenib/administration & dosage , Animals , Antineoplastic Agents, Alkylating/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclophosphamide/pharmacology , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice , Signal Transduction/drug effects , Sorafenib/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL