Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cytotherapy ; 26(6): 606-615, 2024 06.
Article in English | MEDLINE | ID: mdl-38483364

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) hold great promise in the treatment of diabetic retinopathy (DR), as evidenced by increasing preclinical and clinical studies. However, the absence of standardized and industrialized clinical-grade donor cells hampers the continued development and large-scale clinical application of MSCs-based therapies for DR. Previously, we have identified a unique population of MSCs generated from a clinical-grade human embryonic stem cell (hESC) line under Good Manufacturing Practice conditions that could be a potential source to address the issues. Here, we investigated the therapeutic potential of the clinical-grade hESC line-derived MSCs (hESC-MSCs) on db/db mice with DR. METHODS: hESC-MSCs were initially characterized by morphological assessment, flow cytometry analysis and trilineage differentiation assays. These cells (5 × 106 cells) were then transplanted intravenously into 12-week-old db/db mice via tail vein, with phosphate-buffered saline transplantation and untreated groups used as controls. The retinal alterations in neural functions and microvascular perfusions, and inflammatory responses in peripheral blood and retina were evaluated at 4 and 6 weeks after transplantation using electroretinography, optical coherence tomography angiography and flow cytometry, respectively. Body weight and fasting blood glucose (FBG) levels were also measured to investigate their systemic implications. RESULTS: Compared with controls, intravenous transplantation of hESC-MSCs could significantly: (i) enhance impaired retinal electroretinography functions (including amplitudes of a-, b-wave and oscillatory potentials) at 4 weeks after transplantation; (ii) alleviate microvascular dysfunctions, especially in the inner retina with significance (including reducing non-perfusion area and increasing vascular area density) at 4 weeks after transplantation; (iii) decrease FBG levels at 4 weeks after transplantation and induce weight loss up to 6 weeks after transplantation and (iv) increase both peripheral blood and retinal interleukin-10 levels at 4 weeks after transplantation and modulate peripheral blood inflammatory cytokines and chemokines levels, such as monocyte chemotactic protein-1, up to 6 weeks after transplantation. CONCLUSIONS: The findings of our study indicated that intravenous transplantation of hESC-MSCs ameliorated retinal neural and microvascular dysfunctions, regulated body weight and FBG and modulated peripheral blood and retinal inflammation responses in a mouse model of DR. These results suggest that hESC-MSCs could be a potentially effective clinical-grade cell source for the treatment of DR.


Subject(s)
Diabetic Retinopathy , Human Embryonic Stem Cells , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Humans , Diabetic Retinopathy/therapy , Mice , Human Embryonic Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Retina , Disease Models, Animal , Diabetes Mellitus, Experimental/therapy
2.
Foods ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611417

ABSTRACT

Natural macromolecular substances are prevalent in the organs of plants and animals, such as polysaccharides, resins, proteins, etc [...].

3.
Int J Biol Macromol ; 254(Pt 3): 128053, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37963504

ABSTRACT

The sol-gel behavior of tapioca starch (TS) plays a crucial role in the processing and quality control of flour-based products. However, natural tapioca starch has low gel strength and poor viscosity, which tremendously limits its application. To solve this problem, this study investigated the effects of κ-carrageenan (KC), konjac gum (KGM), and Mesona chinensis Benth polysaccharide (MCP) on the pasting behavior, rheological, and structural properties of tapioca starch. KC, KGM, and MCP significantly increased the viscosity of TS. With the exception of high-concentration KGM (0.5 %), all other blending systems showed decrease in setback. This may be attributed to the stronger effect of the high-concentration KC (0.5 %) and MCP (0.5 %) functional groups interacting with starch. KC, KGM, and MCP effectively improved the dynamic modulus (G' and G") of TS gel and were effective in increasing the gel strength and hardness of TS. The FT-IR analysis indicated that the short-range order of TS was mainly influenced by polysaccharides through non-covalent bonding interactions. Furthermore, it was confirmed that three polysaccharides could form dense structures by hydrogen bonding with TS. Similarly, more stable structure and pore size were observed in the microstructure diagram.


Subject(s)
Lamiaceae , Manihot , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry , Starch/chemistry , Carrageenan/chemistry , Rheology , Lamiaceae/chemistry , Viscosity , Gels/chemistry
4.
Food Res Int ; 189: 114561, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876594

ABSTRACT

The aim of this study was to investigate the effects of Premna microphylla turcz polysaccharide (PMP) on the rheological, gelling, and structural properties of mung bean starch (MBS) and their potential interaction mechanism. Results showed that the addition of PMP significantly improved the pasting properties, rheological properties, water holding capacity, and thermostability of MBS. The texture tests showed a decrease in hardness, gumminess and chewiness, indicating the retrogradation of MBS was inhibited. Scanning electron microscopy (SEM) suggested the MBS-PMP composite gels expressed a denser microstructure with obvious folds and tears. Moreover, the results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and interaction force tests revealed the main forces between MBS and PMP were hydrogen bonds and hydrophobic interactions to form composite gels with great gelling properties. These results facilitate the practical application of MBS and PMP, and provide some references for understanding the interaction mechanism between starch and polysaccharide.


Subject(s)
Gels , Polysaccharides , Rheology , Starch , Vigna , Starch/chemistry , Polysaccharides/chemistry , Spectroscopy, Fourier Transform Infrared , Vigna/chemistry , X-Ray Diffraction , Microscopy, Electron, Scanning , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Hydrogen Bonding
5.
J Food Sci ; 89(6): 3591-3602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685863

ABSTRACT

Lipid oxidation often accompanies the processing and storage of peanuts, which causes a serious waste of peanut resources. To solve the problem of being prone to oxidation in peanut processing, a ternary complex antioxidant based on rosemary extract (RE) was constructed to investigate its effect on the oxidative and thermal stability of peanuts, and the inhibition of peanut oxidation by compound antioxidants was revealed by dynamic Arrhenius formula and complexation theory. The results showed that there was a synergistic effect between RE and Tert-butyl hydroquinone (TBHQ), and the antioxidant effects of RE and TBHQ were 4.86 and 1.45 times higher when used in combination than when used alone, respectively. In addition, RE-TBHQ-CA (citric acid) effectively inhibited primary and secondary oxidation of peanuts with a shelf life 8.7 times longer than that of control peanuts. This study provides a novel antioxidant compounding idea, which has a positive effect on improving the quality of peanut and other nut products, prolonging the shelf life and reducing the waste of resources. PRACTICAL APPLICATION: Compounding a complex antioxidant that permits its use in peanuts. It was found that rosemary and TBHQ might have synergistic antioxidant effects. Meanwhile, this combination of RE-TBHQ-CA effectively inhibited the oxidation of peanut oils and prolonged the shelf life of peanuts. RE-TBHQ-CA is a highly efficient complex antioxidant that can reduce the amounts of antioxidants added while maintaining high antioxidant efficiency, which may be useful for the future preservation and storage of nut products as it positively affects the quality and shelf life of the product.


Subject(s)
Antioxidants , Arachis , Citric Acid , Food Storage , Hydroquinones , Oxidation-Reduction , Plant Extracts , Rosmarinus , Rosmarinus/chemistry , Hydroquinones/chemistry , Food Storage/methods , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Arachis/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Food Preservation/methods , Food Preservatives/chemistry , Food Preservatives/pharmacology
6.
Curr Eye Res ; : 1-12, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780907

ABSTRACT

PURPOSE: To explore the correlation of endoplasmic reticulum stress (ERS) and oxidative stress (OS), and the protective effect of Sestrin2 (SESN2) on human lens epithelial cells (HLECs). METHODS: Tunicamycin (TM) was used to induce ERS in HLECs. 4-Phenylbutyric acid (4-PBA) was used to inhibit ERS. Eupatilin applied to HLECs as SESN2 agonist. SESN2 expression was knocked down via si-RNA in HLECs. The morphological changes of HLECs were observed by microscope. ER-tracker to evaluate ERS, ROS production assay to measure ROS, flow cytometry to calculate cell apoptosis rate. Immunofluorescence to observe Nrf2 translocation, and effects of TM or EUP on SESN2. Western blot and qPCR were used to evaluate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, and SESN2 expression in HLECs with different treatment groups. RESULTS: ERS can elevate the expression of ROS and Nrf2 to induce OS. Upregulation of SESN2 was observed in ERS-mediate OS. Overexpression of SESN2 can reduce the overexpression of ERS-related protein GRP78, PERK, ATF4, proapoptotic protein CHOP, OS-related protein Nrf2, as well as ROS, and alleviate ERS injury at the same time. Whereas knockdown of SESN2 can upregulate the expression of GRP78, PERK, ATF4, CHOP, Nrf2, ROS, and deteriorate ERS damage. CONCLUSIONS: ERS can induce OS, they form a vicious cycle to induce apoptosis in HLECs, which may contribute to cataract formation. SESN2 could protect HLECs against the apoptosis by regulating the vicious cycle between ERS and OS.

7.
Food Res Int ; 164: 112331, 2023 02.
Article in English | MEDLINE | ID: mdl-36737924

ABSTRACT

The widely use of petroleum-based plastics causes serious environmental pollution and oil resource shortage. In this work, biodegradable films were prepared based on gallic acid (GA)-induced Chinese yam starch (YS) and chitosan (CS). The fresh-keeping effect of biodegradable films on the pork meat preservation were investigated. The prepared GA/YS/CS biodegradable films exhibited thinner thickness and better light transmittance, because CS effectively decreased the viscosity of film-forming solution and weaken its internal link structure. The SEM results and mechanical results revealed that the YS, GA, and CS had a good compatibility, GA modification and adding CS markedly improved the tensile strength of YS-based film, because the interaction between CS and starch molecular was facilitate owing to the NH3+ of CS tended to form hydrogen bonds with the hydroxyl group of starch. Sensory analysis results suggested that GA/YS/CS films can effectively improve the quality of pork during storage compared to the package of polyethylene film. In summary, the prepared GA/YS/CS film in this work had practical application potential in pork preservation due to its excellent mechanical, antibacterial, oxidation resistance properties, and the development and application of biodegradable starch film can greatly reduce the increasingly serious environmental pollution pressure.


Subject(s)
Chitosan , Dioscorea , Pork Meat , Red Meat , Animals , Swine , Food Packaging/methods , Chitosan/chemistry , Red Meat/analysis , Starch/chemistry , Gallic Acid
8.
Foods ; 12(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372499

ABSTRACT

A dysphagia diet is a special eating plan. The development and design of dysphagia foods should consider both swallowing safety and food nutritional qualities. In this study, the effects of four food supplements, namely vitamins, minerals, salt and sugar, on swallowing characteristics, rheological and textural properties were investigated, and a sensory evaluation of dysphagia foods made with rice starch, perilla seed oil and whey isolate protein was carried out. The results showed that all the samples belonged to foods at level 4 (pureed) in The International Dysphagia Diet Standardization Initiative (IDDSI) framework, and exhibited shear thinning behavior, which is favorable for dysphagia patients. Rheological tests showed that the viscosity of a food bolus was increased with salt and sugar (SS), while it decreased with vitamins and minerals (VM) at shear rates of 50 s-1. Both SS and VM strengthened the elastic gel system, and SS enhanced the storage modulus and loss modulus. VM increased the hardness, gumminess, chewiness and color richness, but left small residues on the spoon. SS provided better water-holding, chewiness and resilience by influencing the way molecules were connected, promoting swallowing safety. SS brought a better taste to the food bolus. Dysphagia foods with both VM and 0.5% SS had the best sensory evaluation score. This study may provide a theoretical foundation for the creation and design of new dysphagia nutritional food products.

9.
Food Res Int ; 166: 112578, 2023 04.
Article in English | MEDLINE | ID: mdl-36914341

ABSTRACT

Purple red rice bran, a by-product of the rice polishing process, contained abundant anthocyanins. However, most of them were discarded resulting in a waste of resources. This study investigated the effects of purple red rice bran anthocyanin extracts (PRRBAE) on the physicochemical properties and digestive properties of rice starch and its mechanism of action. Infrared spectroscopy and X-ray diffraction indicated that PRRBAE could interact with rice starch through non-covalent bonds to form intrahelical V-type complexes. The DPPH and ABTS+ assays showed that PRRBAE could confer better antioxidant activity on rice starch. In addition, the PRRBAE could increase the resistant starch content and decrease the enzyme activities by changing the tertiary and secondary structure of starch-digesting enzymes. Further, molecular docking suggested that aromatic amino acids play a key role in the interaction of starch-digesting enzymes with PRRBAE. These findings will contribute to a better understanding of the mechanism of PRRBAE reducing starch digestibility, and to the development of high value-added products and low glycemic index (GI) foods.


Subject(s)
Anthocyanins , Oryza , Anthocyanins/chemistry , Oryza/chemistry , Molecular Docking Simulation , Starch/chemistry , Antioxidants/chemistry
10.
Food Res Int ; 166: 112609, 2023 04.
Article in English | MEDLINE | ID: mdl-36914353

ABSTRACT

Fibrillation of food proteins has attracted considerable attention as it can improve and broaden the functionality of proteins. In this study, we prepared three kinds of rice protein (RP) fibrils with different structural characteristics by the regulation of NaCl and explored the effect of protein structure on viscosity, emulsifying, and foaming properties. AFM results showed fibrils formed at 0 and 100 mM NaCl were mainly in the range of 50-150 nm and 150-250 nm, respectively. Fibrils formed at 200 mM NaCl were in the range of 50-500 nm and protein fibrils longer than 500 nm increased. There was no significant difference between their height and periodicity. Fibrils formed at 0 and 100 mM NaCl were more flexible and unordered than those formed at 200 mM NaCl. The viscosity consistency index K of native RP and fibrils formed at 0, 100, and 200 mM NaCl were determined. The K value of fibrils was higher than that of native RP. The emulsifying activity index, foam capacity and foam stability were enhanced by fibrillation, while longer fibrils exhibited lower emulsifying stability index, which may be because long fibrils resulted in difficulty of cover of emulsion droplets. In summary, our work provided a valuable reference for improving the functionality of rice protein and facilitated the development of protein-based foaming agents, thickeners, and emulsifiers.


Subject(s)
Oryza , Viscosity , Sodium Chloride , Emulsifying Agents/chemistry , Emulsions/chemistry
11.
Nanomaterials (Basel) ; 12(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269223

ABSTRACT

The incorporation of functional groups endows graphene oxide (GO) with different surface charges, which plays important roles in biological interactions with cells. However, the effect of surface charge of GO derivatives on ocular biocompatibility has not been fully elucidated. Previously, we found that positively, negatively and neutrally charged PEGylated GO (PEG-GO) nanosheets exerted similar effect on the viability of ocular cells. In this work, we performed in vitro and in vivo studies to comprehensively study the effect of surface charge of PEG-GO on ocular compatibility. The in vitro results showed that the cellular uptake efficacy of negatively charged PEG-GO nanosheets was significantly decreased compared with positively charged and neutrally charged analogs. However, three kinds of PEG-GO nanosheets produced similar amounts of intracellular reactive oxygen species and showed similar influence on mitochondrial membrane potential. By analysis of global gene expression profiles, we found that the correlation coefficients between three kinds of PEG-GO-treated cells were more than 0.98. Furthermore, in vivo results showed that all these PEG-GO nanosheets had no significant toxicity to ocular structure and function. Taken together, our work suggested that surface charge of PEG-GO exerted negligible effect on its ocular compatibility, except for the cellular uptake. Our work is conducive to understanding the relationship between surface charge and biocompatibility of GO derivatives.

12.
Int J Biol Macromol ; 222(Pt A): 114-120, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36113602

ABSTRACT

Nowadays,It is difficult for the polysaccharide-starch system to meet demand of practical production owing to the poor gel properties. Therefore, aiming to further improve the practical application of polysaccharide-starch gel, the effects of gallic acid (GA) and heat moisture treatment (HMT) on the gel properties and microstructure of yam starch/chitosan (YS/CS) composite gels were investigated. Swell power (SP) results showed that GA and HMT treatment respectively reduced the SP of YS gel by 3.24 g/g and 6.03 g/g, given that GA and HMT decrease the rheology of the water phase inhibiting the entry of water into the swollen starch. In the pasting process, HMT reduced pasting viscosity of the HMT/YS system because only little amylose was leached in the medium for elevating its viscosity after HMT. The rheological properties suggested that high temperature treatment of HMT facilitated the disruption and disintegration of starch granules resulting dynamic modulus had a decline trend. The elastic properties of GA/YS gels were enhanced with the addition of GA, which could be supported by the thicken lamellar observed in its microstructure. In general, GA and HMT effectively alter the gel properties of YS/CS gel system, and facilitate its practical application in food industry.


Subject(s)
Chitosan , Dioscorea , Starch/chemistry , Hot Temperature , Gallic Acid , Gels , Rheology , Viscosity , Water/chemistry
13.
Carbohydr Polym ; 295: 119875, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35989015

ABSTRACT

The aim of this study was to enhance the stability, bioaccesibility, and bioactivities of curcumin using a composite nanoparticle prepared from zein and Mesona chinensis polysaccharide (MCP). Curcumin-loaded nanoparticles (ZMC NPs) were prepared. ZMC NPs showed smooth spherical structure with a high encapsulation efficiency (94 %), a small average particle size (223 nm), and surface negative charge (-34.53 mV). Compared with free curcumin, encapsulated curcumin has been shown to have better environmental stability, higher antioxidant activity and bioaccesibility. The surface coating of zein NPs with MCP makes them more amenable to uptake by intestinal epithelial cells. Studies on in vitro antitumor activity of ZMC NPs showed that they could enter hepatocellular carcinoma cells, induce cell apoptosis, promote ROS production, and alter mitochondrial membrane potential, showing higher in vitro antitumor activity compared to free curcumin. These results may contribute to the development of novel curcumin oral delivery systems.


Subject(s)
Curcumin , Lamiaceae , Nanoparticles , Zein , Curcumin/chemistry , Curcumin/pharmacology , Nanoparticles/chemistry , Particle Size , Polysaccharides/pharmacology , Zein/chemistry
14.
Curr Res Food Sci ; 5: 2287-2293, 2022.
Article in English | MEDLINE | ID: mdl-36439644

ABSTRACT

The effect of Mesona chinensis Benth gum (MCG) on pasting, rheological and texture properties of different types of starches (tubers, cereals, and beans) were investigated. Pasting results showed that the pasting temperatures (PT) of native cereal and beans starch were higher, and MCG decreased the PT of starch granules by competing water with starch granules for water. MCG increased the peak viscosity and breakdown viscosity of native starches except potato starch, and effectively promoted the short-term retrogradation of all kinds of starches. Rheological results also revealed MCG increased apparent viscosity and dynamic modulus of native starch gels, given that the compacter network structures could be formed after adding MCG. The compacter network structures also contribute to the enhancement of gel strength and hardness, and the decreased spin relaxation time of starch gels. The information provided in this paper could help people to understand the different effects of MCG on the various starch, which had certain significance for starch-MCG product development.

15.
Curr Res Food Sci ; 5: 28-33, 2022.
Article in English | MEDLINE | ID: mdl-34993495

ABSTRACT

The effects of continuous dry heat treatment (CT) and repeated dry heat treatment (RT) on gel and structural properties of chestnut starch (CS) were investigated. CT and RT both reduced the swelling degree of starch and showed significant variations in pasting viscosity, viscoelasticity, gel strength and hardness varying from high to low after dry heat treatment, and CT was lower than that of RT. Neither dry heat treatment nor gelatinization produced new functional groups, and both reduced short-range ordered degree. There were significant decrease in spin-spin relaxation time (T2) with dry heat treatment (CT and RT), which made the starch in the samples closely combine with water. These results are helpful to better understand the changes of physicochemical properties of starch gel products during dry heat treatment and provide some theoretical references for the application of CS in food industry.

16.
Int J Biol Macromol ; 190: 151-158, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34481850

ABSTRACT

Hyacinth bean starch (HBS) was used to prepare nanocomposite films with the reinforcement agent of nanotitanium oxide (TiO2-N) and Mesona chinensis Benth polysaccharide (MCP). The effects of TiO2-N and MCP on the moisture combination, rheological properties of film-forming solutions (FFS) and physiochemical properties of films were investigated. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) revealed that HBS, TiO2-N and MCP had good compatibility, while no novel absorption peak in FTIR spectra, and characteristic peaks of TiO2-N were found in XRD patterns of composite films. Contact angle of HBS/TiO2-N/M3 film increased from 65.6° to 90.9°, which illustrated that TiO2-N and MCP effectively enhanced hydrophobicity of films. TiO2-N and MCP positively affected anti-UV light ability of HBS films by resisting most of invisible light. Furthermore, stable and compact network structures were formed by the synergistic effect of TiO2-N and MCP, thereby elongation to break was increased from 17.123% to 28.603% significantly, and heat resistance was enhanced clearly. This study prepared a nanocomposite HBS-based films based TiO2-N and MCP, which had guiding significance for development of functional films and combination of polysaccharides and metallic oxide.


Subject(s)
Hyacinthus/chemistry , Lamiaceae/chemistry , Nanoparticles/chemistry , Polysaccharides/chemistry , Starch/chemistry , Titanium/chemistry , Humidity , Magnetic Resonance Spectroscopy , Nanoparticles/ultrastructure , Rheology , Solubility , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Starch/ultrastructure , Thermogravimetry , Water/chemistry , X-Ray Diffraction
17.
Int J Biol Macromol ; 170: 366-374, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33383076

ABSTRACT

According to the Chinese traditional black jelly production process, a critical step to ensure the quality of jelly is to add alkali to it. In this study, the effects of sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3) on the pasting, rheological, textural, and structural properties of sweet potato starch (SPS)-Mesona chinensis Benth polysaccharide (MCP) gels were evaluated. Adding Na2CO3 at low concentration reduced the final viscosity (FV) of SPS-MCP gels, whereas adding it at a high concentration increased the FV. Adding NaHCO3 can increase the FV of SPS-MCP gels in a concentration-dependent manner. Rheological results indicated that adding NaHCO3 at a low concentration decreased the storage modulus of SPS-MCP gels, whereas adding it at a high concentration increased the storage modulus. The storage modulus of SPS-MCP gels increased with increasing concentration of NaHCO3. The addition of Na2CO3 and NaHCO3 improved the textural properties of SPS-MCP gels and decreased the water mobility. Infrared results indicated that adding alkali can enhance the hydrogen bonding between SPS and MCP. Scanning electron microscopy results suggested that alkali can reduce the size of gels, and make the structure more compact.


Subject(s)
Alkalies/chemistry , Lamiaceae/chemistry , Starch/chemistry , China , Colloids , Dietary Carbohydrates , Gels/chemical synthesis , Ipomoea batatas/chemistry , Medicine, Chinese Traditional/methods , Polysaccharides/chemistry , Rheology/methods , Temperature , Viscosity/drug effects , Water
18.
Carbohydr Polym ; 240: 116316, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32475580

ABSTRACT

Interactions between starch and non-starch polysaccharides are very important for predicting and controlling the structure and function of starch-.based products. In this study, the effects of Mesona chinensis Benth polysaccharide (MCP) on the pasting, rheological, structural, and water mobility properties of rice starch (RS)-MCP gels were evaluated. Results indicated that MCP can increase the pasting viscosity, and gel properties of RS-MCP gels. Rheological results showed that RS-MCP gels exhibited shear-thinning behavior and that MCP can enhance the viscoelasticity of RS-MCP gels. Fourier-transform infrared spectra results indicated no covalent interaction between RS and MCP, and MCP could increase the degree of short-range order of RS-MCP gels. MCP also enhanced the water-retention capacity of RS-MCP gels. Scanning electron microscopy results suggested that MCP could decrease the pore sizes of RS gels and the microstructure of RS gels became more ordered at 0.1 % concentration of MCP. The results suggested that the amylose and MCP molecules interacted through hydrogen bonds and electrostatic forces, which enhanced the gelling properties of RS-MCP gels. Overall, this study shows the potential applications of MCP, and also provides the theoretical basis of interactions in starch-hydrocolloids systems.


Subject(s)
Lamiaceae , Oryza , Polysaccharides/chemistry , Gels , Rheology , Water/chemistry
19.
Carbohydr Polym ; 230: 115650, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887904

ABSTRACT

Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.


Subject(s)
Chondroitin Sulfates , Drug Delivery Systems/methods , Hydrogels/therapeutic use , Nanoparticles/therapeutic use , Tissue Engineering/methods , Animals , Biocompatible Materials/therapeutic use , Cells, Cultured , Chondroitin Sulfates/chemical synthesis , Chondroitin Sulfates/therapeutic use , Humans , Mice , Rats , Tissue Scaffolds
20.
J Biomed Mater Res A ; 108(6): 1321-1328, 2020 06.
Article in English | MEDLINE | ID: mdl-32064738

ABSTRACT

Graphene oxide (GO) has several potential biomedical applications and therefore cytotoxic evaluation of GO is very important. However, the two most common in vitro models for testing cytotoxicity-primary human cells and immortalized cell lines-suffer serious limitations, namely limited supplies of cells and unrealistic cellular responses, respectively. Here, we demonstrate the use of embryonic stem cell (ESC)-derived cells to study GO cytotoxicity. We tested the use of retinal pigment epithelium (RPE) cells derived from three-dimensional human ESC cultures ("ESC-RPE" cells) as a model of GO cytotoxicity by exposing them to varying concentrations of GO nanosheets. For comparison, we also performed the same test with primary human retinal pigment epithelium cells ("hRPE"), and with cells derived from a human RPE cell line ("ARPE19" cells). We found that cytotoxicity metrics (viability, apoptosis, intracellular reactive oxygen species, and mitochondrial membrane potential) were very similar in ESC-RPE cells and hRPE cells, and those in ARPE19 cells were very different. We conclude that cell models of GO cytotoxicity derived from ESCs are an excellent alternative to primary human cells, without the limitations of tissue availability.


Subject(s)
Graphite/toxicity , Human Embryonic Stem Cells/cytology , Nanostructures/toxicity , Retinal Pigment Epithelium/drug effects , Apoptosis/drug effects , Cell Line , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL