Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal
Affiliation country
Publication year range
1.
Nature ; 548(7666): 214-218, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28783727

ABSTRACT

The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter-gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Subject(s)
Ethnicity/genetics , Phylogeny , Chromosomes, Human, X/genetics , Ethnicity/history , Female , Greece , History, Ancient , Human Migration/history , Humans , Male , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis
2.
Nature ; 536(7617): 419-24, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27459054

ABSTRACT

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Subject(s)
Agriculture/history , Genomics , Human Migration/history , Phylogeny , Racial Groups/genetics , Africa, Eastern , Animals , Armenia , Asia , DNA/analysis , Europe , History, Ancient , Humans , Hybridization, Genetic/genetics , Iran , Israel , Jordan , Neanderthals/genetics , Phylogeography , Turkey
3.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26595274

ABSTRACT

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Subject(s)
Genome, Human/genetics , Selection, Genetic/genetics , Agriculture/history , Asia/ethnology , Body Height/genetics , Bone and Bones , DNA/genetics , DNA/isolation & purification , Diet/history , Europe/ethnology , Genetics, Population , Haplotypes/genetics , History, Ancient , Humans , Immunity/genetics , Male , Multifactorial Inheritance/genetics , Pigmentation/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL