Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417889

ABSTRACT

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomics/methods , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation/genetics , Phenotype
2.
Hum Mol Genet ; 28(17): 2900-2919, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31127942

ABSTRACT

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.


Subject(s)
Biomarkers , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , Phenotype , Adolescent , Adult , Alleles , Child , Child, Preschool , Computational Biology/methods , Enzyme Activation , Enzyme Stability , Facies , Female , Genetic Loci , Genetic Testing , Genotype , Humans , Infant , Male , Models, Molecular , Mutation , N-Terminal Acetyltransferase A/chemistry , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/chemistry , N-Terminal Acetyltransferase E/metabolism , Protein Conformation , Recombinant Proteins , Structure-Activity Relationship , Young Adult
3.
Am J Hum Genet ; 102(6): 1078-1089, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29754767

ABSTRACT

Advances in sequencing technologies permit the analysis of a larger selection of genes for preconception carrier screening. The study was designed as a sequential carrier screen using genome sequencing to analyze 728 gene-disorder pairs for carrier and medically actionable conditions in 131 women and their partners (n = 71) who were planning a pregnancy. We report here on the clinical laboratory results from this expanded carrier screening program. Variants were filtered and classified using the latest American College of Medical Genetics and Genomics (ACMG) guideline; only pathogenic and likely pathogenic variants were confirmed by orthologous methods before being reported. Novel missense variants were classified as variants of uncertain significance. We reported 304 variants in 202 participants. Twelve carrier couples (12/71 couples tested) were identified for common conditions; eight were carriers for hereditary hemochromatosis. Although both known and novel variants were reported, 48% of all reported variants were missense. For novel splice-site variants, RNA-splicing assays were performed to aid in classification. We reported ten copy-number variants and five variants in non-coding regions. One novel variant was reported in F8, associated with hemophilia A; prenatal testing showed that the male fetus harbored this variant and the neonate suffered a life-threatening hemorrhage which was anticipated and appropriately managed. Moreover, 3% of participants had variants that were medically actionable. Compared with targeted mutation screening, genome sequencing improves the sensitivity of detecting clinically significant variants. While certain novel variant interpretation remains challenging, the ACMG guidelines are useful to classify variants in a healthy population.


Subject(s)
Clinical Laboratory Techniques , Genetic Testing/methods , Preconception Care , Whole Genome Sequencing , DNA Copy Number Variations/genetics , Disease/genetics , Female , Genetic Predisposition to Disease , Haplotypes/genetics , Heterozygote , Humans , Introns/genetics , Male , Mutation/genetics , Pregnancy , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29656860

ABSTRACT

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.


Subject(s)
Abnormalities, Multiple/genetics , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Genetic Variation , Intellectual Disability/genetics , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase E/genetics , Adolescent , Adult , Cell Line , Child , Exons/genetics , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Mutation/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/metabolism , Pedigree , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism
6.
Article in English | MEDLINE | ID: mdl-31890059

ABSTRACT

BACKGROUND: Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome. This study assesses trends in diagnosis of LS and adherence to recommended LS-related care in a large integrated healthcare organization (~ 575,000 members). METHODS: Electronic medical record (EMR) data (1999-2015) were examined to identify patients with a diagnosis of LS. We examined their LS-associated care recommendations and adherence to these recommendations. Qualitative patient and provider interviews were conducted with the aim of identifying opportunities for improved care delivery. RESULTS: We identified 74 patients with a diagnosis of LS; 64% were diagnosed with a LS-related malignancy prior to their diagnosis of LS. The time to LS diagnosis following development of a LS-related cancer decreased over time: before 2009 11% of individuals received a diagnosis of LS within 1 year of developing a LS-related cancer compared to 83% after 2009 (p < 0.0001). Colonoscopy recommendations were documented in the EMR for almost all patients with LS (96%). Documentation of other recommendations for cancer surveillance was less commonly found. Overall, patient adherence to colonoscopy was high (M = 81.5%; SD = 32.7%), and adherence to other recommendations varied. To improve care coordination, patients and providers suggested providing automated reminder prompts for LS-related surveillance, adding a LS-specific diagnosis code, and providing guidelines for LS-related surveillance in the EMR. CONCLUSIONS: We identified fewer than expected patients with LS in our large care system, indicating that there is still a diagnostic care gap. However, patients with LS were likely to receive and follow CRC surveillance recommendations. Recommendations for and adherence to extracolonic surveillance were variable. Improved care coordination and clearer documentation of the LS diagnosis is needed.

7.
Am J Hum Genet ; 97(6): 922-32, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26637982

ABSTRACT

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


Subject(s)
Developmental Disabilities/genetics , Histone Acetyltransferases/genetics , Intellectual Disability/genetics , Neurodegenerative Diseases/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adolescent , Animals , Child , Child, Preschool , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Disease Models, Animal , E-Box Elements , Facies , Family , Gene Expression Regulation , Histone Acetyltransferases/metabolism , Humans , Infant , Inheritance Patterns , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mutation , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Pedigree , Phenotype , Signal Transduction , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism , Young Adult , Zebrafish
8.
Article in English | MEDLINE | ID: mdl-29760830

ABSTRACT

BACKGROUND: Patients with a genetic variant associated with Lynch syndrome (LS) are recommended to undergo frequent and repeated cancer surveillance activities to minimize cancer-related morbidity and mortality. Little is known about how patients and primary care providers (PCPs) track and manage these recommendations. We conducted a small exploratory study of patient and PCP experiences with recommended LS surveillance activities and communication with family members in an integrated health care system. METHODS: We used in-depth interviews with patients and providers to understand how surveillance is coordinated and monitored following confirmation of LS. We recruited patients with a range of ages/gender, and providers with at least at least one patient with a molecular diagnosis of LS. All interviews were recorded, transcribed, and content analyzed by a trained qualitative methodologist. RESULTS: Twenty-two interviews were completed with 12 patients and 10 providers. Most patients (10) had detailed knowledge of surveillance recommendations, but were less sure of time intervals. While all patients reported receiving initial education about their surveillance recommendations from a genetic counselor, seven did not follow-up with a genetic counselor in subsequent years. A third of patients described taking sole responsibility for managing their LS surveillance care. Lack of routine communication from the health system (e.g., prompts for surveillance activities), and provider engagement were surveillance barriers. PCPs were generally aware of LS, but had limited familiarity with surveillance recommendations. Most PCPs (7) viewed LS as rare and relied on patient and specialist expertise and support. Providers typically had 1 patient with LS in a panel of 1800 patients overall. Providers felt strongly that management of LS should be coordinated by a dedicated team of specialists. Most patients (92%) had at least one family member that sought LS testing, and common barriers for family members included lack of insurance, affordability, and fear of result. CONCLUSION: The maximal benefits of screening for confirmation of LS will only be realized with adherence to recommended preventive care. Important factors to ensure patients receive recommended LS care include a comprehensive and coordinated monitoring program that includes reminder prompts, and increased PCP education of LS and associated surveillance recommendations.

10.
Genet Med ; 19(7): 803-808, 2017 07.
Article in English | MEDLINE | ID: mdl-28079899

ABSTRACT

PURPOSE: We investigated the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient. METHODS: We categorized gene-condition pairs into groups using a previously developed taxonomy of genetic conditions. Patients could elect to receive results from these categories. A Return of Results Committee (RORC) developed inclusion and exclusion criteria for each category. RESULTS: To date, the RORC has categorized 728 gene-condition pairs: 177 are categorized as life span-limiting, 406 are categorized as serious, 93 are categorized as mild, 41 are categorized as unpredictable, and 11 are categorized as adult-onset. An additional 64 gene-condition pairs were excluded from reporting to patients or put on a watch list, generally because evidence that a gene and condition were associated was limited. CONCLUSION: Categorization of gene-condition pairs using our taxonomy simplifies communication regarding patient preferences for carrier information from a genomic test.Genet Med advance online publication 12 January 2017.


Subject(s)
Disclosure/standards , Genetic Carrier Screening/methods , Genetic Carrier Screening/standards , Disclosure/ethics , Exome , Genetic Testing/ethics , Genetic Testing/methods , Genetic Testing/standards , Genome, Human , Genomics , Humans , Incidental Findings , Patient Preference , Sequence Analysis, DNA/methods
11.
Am J Med Genet A ; 170(3): 574-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26792268

ABSTRACT

Advances in genome sequencing and gene discovery have created opportunities to efficiently assess more genetic conditions than ever before. Given the large number of conditions that can be screened, the implementation of expanded carrier screening using genome sequencing will require practical methods of simplifying decisions about the conditions for which patients want to be screened. One method to simplify decision making is to generate a taxonomy based on expert judgment. However, expert perceptions of condition attributes used to classify these conditions may differ from those used by patients. To understand whether expert and patient perceptions differ, we asked women who had received preconception genetic carrier screening in the last 3 years to fill out a survey to rate the attributes (predictability, controllability, visibility, and severity) of several autosomal recessive or X-linked genetic conditions. These conditions were classified into one of five taxonomy categories developed by subject experts (significantly shortened lifespan, serious medical problems, mild medical problems, unpredictable medical outcomes, and adult-onset conditions). A total of 193 women provided 739 usable ratings across 20 conditions. The mean ratings and correlations demonstrated that participants made distinctions across both attributes and categories. Aggregated mean attribute ratings across categories demonstrated logical consistency between the key features of each attribute and category, although participants perceived little difference between the mild and serious categories. This study provides empirical evidence for the validity of our proposed taxonomy, which will simplify patient decisions for results they would like to receive from preconception carrier screening via genome sequencing.


Subject(s)
Family Planning Services/ethics , Genetic Carrier Screening , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/diagnosis , Genome, Human , Adult , Decision Making/ethics , Exome , Female , Genetic Counseling , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Genetic Testing , Heterozygote , Humans , Incidental Findings , Male , Preconception Care , Pregnancy , Sequence Analysis, DNA , Surveys and Questionnaires , Terminology as Topic
12.
Am J Med Genet A ; 170(3): 565-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26889673

ABSTRACT

As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not. The Kaiser Permanente Clinical Sequencing Exploratory Research program is conducting a randomized clinical trial of preconception carrier testing that allows participants to select their preferences for results from among broad descriptive categories rather than selecting individual conditions. This paper describes (1) the criteria developed by the research team, the return of results committee (RORC), and stakeholders for defining the categories; (2) the process of refining the categories based on input from patient focus groups and validation through a patient survey; and (3) how the RORC then assigned specific gene-condition pairs to taxonomy categories being piloted in the trial. The development of four categories (serious, moderate/mild, unpredictable, late onset) for sharing results allows patients to select results based on their values without separately deciding their interest in knowing their carrier status for hundreds of conditions. A fifth category, lifespan limiting, was always shared. The lessons learned may be applicable in other results disclosure situations, such as incidental findings.


Subject(s)
Family Planning Services/ethics , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/diagnosis , Genetic Testing/ethics , Genome, Human , Truth Disclosure/ethics , Decision Making/ethics , Exome , Female , Focus Groups , Genetic Carrier Screening , Genetic Counseling , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Heterozygote , Humans , Incidental Findings , Male , Randomized Controlled Trials as Topic , Sequence Analysis, DNA , Surveys and Questionnaires , Terminology as Topic
13.
Am J Med Genet A ; 167A(12): 2916-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26333794

ABSTRACT

In order to describe the physical characteristics, medical complications, and natural history of classic 7q11.23 duplication syndrome [hereafter Dup7 (MIM 609757)], reciprocal duplication of the region deleted in Williams syndrome [hereafter WS (MIM 194050)], we systematically evaluated 53 individuals aged 1.25-21.25 years and 11 affected adult relatives identified in cascade testing. In this series, 27% of probands with Dup7 had an affected parent. Seven of the 26 de novo duplications that were examined for inversions were inverted; in all seven cases one of the parents had the common inversion polymorphism of the WS region. We documented the craniofacial features of Dup7: brachycephaly, broad forehead, straight eyebrows, broad nasal tip, low insertion of the columella, short philtrum, thin upper lip, minor ear anomalies, and facial asymmetry. Approximately 30% of newborns and 50% of older children and adults had macrocephaly. Abnormalities were noted on neurological examination in 88.7% of children, while 81.6% of MRI studies showed structural abnormalities such as decreased cerebral white matter volume, cerebellar vermis hypoplasia, and ventriculomegaly. Signs of cerebellar dysfunction were found in 62.3%, hypotonia in 58.5%, Developmental Coordination Disorder in 74.2%, and Speech Sound Disorder in 82.6%. Behavior problems included anxiety disorders, ADHD, and oppositional disorders. Medical problems included seizures, 19%; growth hormone deficiency, 9.4%; patent ductus arteriosus, 15%; aortic dilation, 46.2%; chronic constipation, 66%; and structural renal anomalies, 18%. We compare these results to the WS phenotype and offer initial recommendations for medical evaluation and surveillance of individuals who have Dup7.


Subject(s)
Williams Syndrome/etiology , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 7 , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Face/abnormalities , Female , Humans , Infant , Male , Megalencephaly , Pregnancy , Pregnancy Complications/genetics , Williams Syndrome/genetics , Young Adult
14.
Am J Med Genet A ; 167A(8): 1747-57, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944730

ABSTRACT

Aortopathy can be defined as aortic dilation, aneurysm, dissection, and tortuosity. Familial aortopathy may occur secondary to fibrillin-1 (FBN1) mutations in the setting of Marfan syndrome, or may occur as a result of other genetic defects with different, but occasionally overlapping, phenotypes. Because of the phenotypic overlap and genetic heterogeneity of disorders featuring aortopathy, we developed a next generation sequencing (NGS) assay and comparative genomic hybridization (CGH) array to detect mutations in 10 genes that cause thoracic aortic aneurysms (TAAs). Here, we report on the clinical and molecular findings in 175 individuals submitted for aortopathy panel testing at ARUP laboratories. Ten genes associated with heritable aortopathies were targeted using hybridization capture prior to sequencing. NGS results were analyzed, and variants were confirmed using Sanger sequencing. Array CGH was used to detect copy-number variation. Of 175 individuals, 18 had a pathogenic mutation and 32 had a variant of uncertain significance (VUS). Most pathogenic mutations (72%) were identified in FBN1. A novel large SMAD3 duplication and FBN1 deletion were identified. Over half who had TAAs or other aortic involvement tested negative for a mutation, suggesting that additional aortopathy genes exist. We anticipate that the clinical sensitivity of at least 10.3% will rise with VUS reclassification and as additional genes are identified and included in the panel. The aortopathy NGS panel aids in the timely molecular diagnosis of individuals with disorders featuring aortopathy and guides proper treatment.


Subject(s)
Aortic Diseases/pathology , Marfan Syndrome/diagnosis , Sequence Analysis, DNA/methods , Female , Humans , Male , Marfan Syndrome/genetics , Marfan Syndrome/pathology
15.
Am J Hum Genet ; 89(1): 28-43, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21700266

ABSTRACT

We have identified two families with a previously undescribed lethal X-linked disorder of infancy; the disorder comprises a distinct combination of an aged appearance, craniofacial anomalies, hypotonia, global developmental delays, cryptorchidism, and cardiac arrhythmias. Using X chromosome exon sequencing and a recently developed probabilistic algorithm aimed at discovering disease-causing variants, we identified in one family a c.109T>C (p.Ser37Pro) variant in NAA10, a gene encoding the catalytic subunit of the major human N-terminal acetyltransferase (NAT). A parallel effort on a second unrelated family converged on the same variant. The absence of this variant in controls, the amino acid conservation of this region of the protein, the predicted disruptive change, and the co-occurrence in two unrelated families with the same rare disorder suggest that this is the pathogenic mutation. We confirmed this by demonstrating a significantly impaired biochemical activity of the mutant hNaa10p, and from this we conclude that a reduction in acetylation by hNaa10p causes this disease. Here we provide evidence of a human genetic disorder resulting from direct impairment of N-terminal acetylation, one of the most common protein modifications in humans.


Subject(s)
Acetyltransferases/deficiency , Acetyltransferases/genetics , Chromosomes, Human, X/genetics , Genes, X-Linked , Acetylation , Exons , Haplotypes , Humans , Infant, Newborn , Male , Mutation , N-Terminal Acetyltransferase A , N-Terminal Acetyltransferase E , Pedigree , Phenotype
16.
Am J Med Genet A ; 164A(11): 2701-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25123577

ABSTRACT

The 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion disorder. Most of the patients show the common 3 Mb deletion but proximal 1.5 Mb deletion and unusual deletions located outside the common deleted region, have been detected particularly with the advance of comparative cytogenomic microarray technologies. The individuals reported in the literature with unusual deletions involving the 22q11 region, showed milder facial phenotypes, decreased incidence of cardiac anomalies, and intellectual disability. We describe two sibs with an atypical 0.8 Mb microdeletion of chromosome 22q11 who both showed myelomeningocele and mild facial dysmorphisms. The association between neural tube defect and the clinical diagnosis of Di George anomaly/velocardiofacial syndrome is well documented in the literature, but not all cases had molecular studies to determine breakpoint regions. This report helps to narrow a potential critical region for neural tube defects associated with 22q11 deletions.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Neural Tube Defects/genetics , Exome , Facies , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Karyotyping , Magnetic Resonance Imaging , Male , Meningomyelocele/diagnosis , Meningomyelocele/genetics , Neural Tube Defects/diagnosis , Phenotype , Siblings
17.
J Genet Couns ; 23(6): 922-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25120037

ABSTRACT

Mosaic chromosomal abnormalities are relatively common. However, mosaicism may be missed due to multiple factors including failure to recognize clinical indications and order appropriate testing, technical limitations of diagnostic assays, or sampling tissue (s) in which mosaicism is either not present, or present at very low levels. Blood leukocytes have long been the "gold standard" sample for cytogenetic analysis; however, the culturing process for routine chromosome analysis can complicate detection of mosaicism since the normal cell line may have a growth advantage in culture, or may not be present in the cells that produce metaphases (the lymphocytes). Buccal cells are becoming increasingly utilized for clinical analyses and are proving to have many advantages. Buccal swabs allow for simple and noninvasive DNA collection. When coupled with a chromosomal microarray that contains single nucleotide polymorphic probes, analysis of buccal cells can maximize a clinician's opportunity to detect cytogenetic mosaicism. We present three cases of improved diagnosis of mosaic aberrations using buccal specimens for chromosomal microarray analysis. In each case, the aberration was either undetectable in blood or present at such a low level it likely could have gone undetected. These cases highlight the limitations of certain laboratory methodologies for identifying mosaicism. We also present practice implications for genetic counselors, including clinic workflow changes and counseling approaches based on increasing use of buccal samples.


Subject(s)
Chromosome Aberrations , Chromosome Disorders/diagnosis , Genetic Testing/methods , Mosaicism , Mouth Mucosa/chemistry , Female , Humans , Microarray Analysis , Oligonucleotide Array Sequence Analysis/methods
18.
Cancers (Basel) ; 16(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39061202

ABSTRACT

BACKGROUND: Recommendations state all people with ovarian cancers (OCs) receive genetic counseling, but testing uptake is only between 15 and 31%. Those with a prior diagnosis of OC who have not received genetic testing represent a missed opportunity for life-saving genetic risk information. The Genetic Risk Analysis in ovarian CancEr (GRACE) study aimed to evaluate the feasibility of the retrospective identification ("Traceback") of individuals diagnosed with OC. METHODS: This nonrandomized intervention study within two integrated health care systems identified participants with a history of OC between 1998 and 2020 who did not have genetic testing or testing limited to BRCA1/2. Participants received clinical genomic sequencing via a custom 60 gene panel. This study measured the feasibility of the Traceback methodology in OC survivors. RESULTS: The initial cohort included 929 individuals, of which 57% had no prior genetic testing. Of the 302 eligible for recruitment, 88 consented to participate. We were able to outreach 97% of the eligible population using contact information from medical records. The stage at diagnosis was the only factor associated with consent. Of the 78 who returned their saliva sample, 21% had pathogenic/likely pathogenic variants, and 79% had negative results. CONCLUSION: The GRACE study resulted in a 29% uptake of genetic testing in OC survivors. The time since diagnosis did not have an impact on consent or ability to contact. GRACE can inform the implementation of future Traceback programs, providing guidance on how to prevent and mitigate the burden of OC and other hereditary cancers.

19.
Am J Med Genet A ; 158A(12): 3148-58, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23165946

ABSTRACT

Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein-protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5-12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks.


Subject(s)
Hernias, Diaphragmatic, Congenital , Animals , Chromosome Deletion , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , DNA/blood , DNA/genetics , DNA Glycosylases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , GATA4 Transcription Factor/genetics , Heart Defects, Congenital/blood , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Hernia, Diaphragmatic/blood , Hernia, Diaphragmatic/genetics , Hernia, Diaphragmatic/metabolism , Humans , Karyotyping , Mice , Mice, Inbred C57BL , Phenotype , Pregnancy , Protein Interaction Maps , SOXF Transcription Factors/genetics
20.
Per Med ; 19(2): 125-138, 2022 03.
Article in English | MEDLINE | ID: mdl-35171038

ABSTRACT

Aim: As genomic medicine reaches more diverse populations, there is an increased need for healthcare interpreters who understand and can effectively interpret genomics concepts. Methods: We designed a course for healthcare interpreters on exome sequencing to enhance their preparedness for genomic results disclosure appointments in the Cancer Health Assessments Reaching Many (CHARM) study and beyond. The course was evaluated via pre/post surveys and qualitative interviews. Results: 23 interpreters completed the course; 87% rated it as excellent/very good. Improved pre/post confidence interpreting for genetics appointments was statistically significant; pre/post knowledge was not. Interviews highlighted the need for more discussion time. Conclusion: While the course increased confidence interpreting for exome sequencing results appointments, suggested modifications could enhance knowledge and retention of key concepts.


Subject(s)
Physician-Patient Relations , Translating , Exome/genetics , Genomics , Humans , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL