Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
PLoS Med ; 21(5): e1004376, 2024 May.
Article in English | MEDLINE | ID: mdl-38723040

ABSTRACT

BACKGROUND: Recently revised WHO guidelines on malaria chemoprevention have opened the door to more tailored implementation. Countries face choices on whether to replace old drugs, target additional age groups, and adapt delivery schedules according to local drug resistance levels and malaria transmission patterns. Regular routine assessment of protective efficacy of chemoprevention is key. Here, we apply a novel modelling approach to aid the design and analysis of chemoprevention trials and generate measures of protection that can be applied across a range of transmission settings. METHODS AND FINDINGS: We developed a model of genotype-specific drug protection, which accounts for underlying risk of infection and circulating genotypes. Using a Bayesian framework, we fitted the model to multiple simulated scenarios to explore variations in study design, setting, and participant characteristics. We find that a placebo or control group with no drug protection is valuable but not always feasible. An alternative approach is a single-arm trial with an extended follow-up (>42 days), which allows measurement of the underlying infection risk after drug protection wanes, as long as transmission is relatively constant. We show that the currently recommended 28-day follow-up in a single-arm trial results in low precision of estimated 30-day chemoprevention efficacy and low power in determining genotype differences of 12 days in the duration of protection (power = 1.4%). Extending follow-up to 42 days increased precision and power (71.5%) in settings with constant transmission over this time period. However, in settings of unstable transmission, protective efficacy in a single-arm trial was overestimated by 24.3% if recruitment occurred during increasing transmission and underestimated by 15.8% when recruitment occurred during declining transmission. Protective efficacy was estimated with greater precision in high transmission settings, and power to detect differences by resistance genotype was lower in scenarios where the resistant genotype was either rare or too common. CONCLUSIONS: These findings have important implications for the current guidelines on chemoprevention efficacy studies and will be valuable for informing where these studies should be optimally placed. The results underscore the need for a comparator group in seasonal settings and provide evidence that the extension of follow-up in single-arm trials improves the accuracy of measures of protective efficacy in settings with more stable transmission. Extension of follow-up may pose logistical challenges to trial feasibility and associated costs. However, these studies may not need to be repeated multiple times, as the estimates of drug protection against different genotypes can be applied to different settings by adjusting for transmission intensity and frequency of resistance.


Subject(s)
Antimalarials , Chemoprevention , Drug Resistance , Malaria , Humans , Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria/prevention & control , Malaria/transmission , Malaria/epidemiology , Chemoprevention/methods , Bayes Theorem , Genotype , Research Design
2.
Malar J ; 22(1): 71, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36859238

ABSTRACT

BACKGROUND: Malaria is a major public health issue with substantial risks among vulnerable populations. Currently, the World Health Organization (WHO) recommends SP-IPTp in the second and third trimesters. However, the efficacy of SP-IPTp is threatened by the emergence of sulfadoxine-pyrimethamine resistant malaria parasites due to single nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. This study aimed to assess the current prevalence of Pfdhfr/Pfdhps mutations in P. falciparum isolates collected from individuals residing in Ile-Ife, Nigeria, and also present maps of the prevalence of Pfdhps 431V and 581G within Nigeria and surrounding countries. METHODS: Between October 2020 and April 2021, samples were collected as dried blood spots among 188 participants who showed malaria positivity with a histidine-rich-protein-based rapid diagnostic test (RDT). Nested PCR assays were used to confirm falciparum in the samples with RDT positivity, and to amplify fragments of the Pfdhfr/Pfdhps genes followed by targeted amplicon sequencing. Published data since 2007 on the prevalence of the Pfdhps genotypes in Nigeria and the neighbouring countries were used to produce maps to show the distribution of the mutant genotypes. RESULTS: Only 74 and 61 samples were successfully amplified for the Pfdhfr and Pfdhps genes, respectively. At codons resulting in N51I, C59R, and S108N, Pfdhfr carried mutant alleles of 97.3% (72/74), 97.3% (72/74) and 98.6% (73/74), respectively. The Pfdhps gene carried mutations at codons resulting in amino acid changes at 431-436-437-540-581-613; I431V [45.9%, (28/61)], A581G [31.1% (19/61)] and A613S [49.2% (30/61)]. Constructed haplotypes were mainly the triple Pfdhfr mutant 51I-59R-108N (95.9%), and the most common haplotypes observed for the Pfdhps gene were the ISGKAA (32.8%), ISGKGS (8.2%), VAGKAA (14.8%), VAGKAS (9.8%) and VAGKGS (14.8%). In the context of the previously published data, a high prevalence of 431V/581G mutations was found in the study population. It seems quite evident that the Pfdhps 431V, 581G and 613S often co-occur as Pfdhps-VAGKGS haplotype. CONCLUSION: This study showed that the prevalence of VAGKGS haplotype seems to be increasing in prevalence. If this is similar in effect to the emergence of 581G in East Africa, the efficacy of SP-IPTp in the presence of these novel Pfdhps mutants should be re-assessed.


Subject(s)
Dihydropteroate Synthase , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Humans , Dihydropteroate Synthase/genetics , Malaria, Falciparum/parasitology , Nigeria , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Prevalence , Drug Resistance/genetics
3.
PLoS Genet ; 16(2): e1008576, 2020 02.
Article in English | MEDLINE | ID: mdl-32053607

ABSTRACT

Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.


Subject(s)
Disease Outbreaks/prevention & control , Genome, Protozoan/genetics , Genotyping Techniques/methods , Malaria, Vivax/transmission , Plasmodium vivax/genetics , Africa, Eastern , Asia , Datasets as Topic , Disease Eradication/methods , Genetic Markers/genetics , Genotype , Geography , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Metadata , Microsatellite Repeats/genetics , Plasmodium vivax/isolation & purification , Polymorphism, Single Nucleotide/genetics , Predictive Value of Tests , South America , Travel-Related Illness , United Kingdom , Whole Genome Sequencing
4.
PLoS Genet ; 13(9): e1007008, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28922357

ABSTRACT

The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.


Subject(s)
Host-Pathogen Interactions/genetics , Malaria/genetics , Organelles/genetics , Plasmodium knowlesi/genetics , Animals , Culicidae/genetics , Culicidae/parasitology , Genome , Humans , Insect Vectors/genetics , Macaca fascicularis/genetics , Macaca fascicularis/parasitology , Macaca nemestrina/genetics , Macaca nemestrina/parasitology , Malaria/parasitology , Malaria/transmission , Organelles/parasitology , Plasmodium knowlesi/pathogenicity
5.
Malar J ; 18(1): 267, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31477109

ABSTRACT

Parasite resistance against anti-malarial drugs is a major threat to the ongoing malaria control and elimination strategies. This is especially true since resistance to the currently recommended artemisinins and partner drugs has been confirmed in South East Asia (SEA) and new anti-malarial compounds are not expected to be available in the near future. Spread from SEA or independent emergence of artemisinin resistance in sub-Saharan Africa (SSA) could reverse the achievements in malaria control that have been attained in the past two decades and derail the ongoing elimination strategies. The current surveillance of clinical efficacy and resistance to anti-malarial drugs is based on efficacy trials to assess the clinical performance of anti-malarials, in vivo/ex vivo assessment of parasite susceptibility to anti-malarials and prevalence of known molecular markers of drug resistance. Whereas clinical efficacy trials are restricted by cost and the complex logistics of patient follow-up, molecular detection of genetic mutations associated with resistance or reduced susceptibility to anti-malarials is by contrast a simple and powerful tool for early detection and monitoring of the prevalence of resistant parasites at population level. This provides needed information before clinical failure emerges, allowing policy makers to anticipate problems and respond. The various methods previously used in detection of molecular markers of drug resistance share some limitations: low-throughput, and high costs per sample and demanding infrastructure. However, recent technological advances including next-generation sequencing (NGS) methodologies promise greatly increased throughput and reduced costs, essentially providing unprecedented potential to address different research and operational questions of relevance for drug policy. This review assesses the potential role of NGS to provide comprehensive information that could guide drug policies in malaria endemic countries and looks at the foreseeable challenges facing the establishment of NGS approaches for routine surveillance of parasite resistance to anti-malarials in SSA.


Subject(s)
Antimalarials/therapeutic use , Communicable Disease Control/legislation & jurisprudence , Drug Resistance/genetics , High-Throughput Nucleotide Sequencing , Plasmodium falciparum/genetics , Policy Making , Africa South of the Sahara , Communicable Disease Control/methods , Drug Therapy, Combination , Global Health/legislation & jurisprudence , Global Health/standards , Legislation, Drug , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects
6.
Malar J ; 18(1): 430, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31852480

ABSTRACT

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is a cornerstone of malaria chemoprophylaxis and is considered for programmes in the Democratic Republic of Congo (DRC). However, SP efficacy is threatened by drug resistance, that is conferred by mutations in the dhfr and dhps genes. The World Health Organization has specified that intermittent preventive treatment for infants (IPTi) with SP should be implemented only if the prevalence of the dhps K540E mutation is under 50%. There are limited current data on the prevalence of resistance-conferring mutations available from Eastern DRC. The current study aimed to address this knowledge gap. METHODS: Dried blood-spot samples were collected from clinically suspected malaria patients [outpatient department (OPD)] and pregnant women attending antenatal care (ANC) in four sites in North and South Kivu, DRC. Quantitative PCR (qPCR) was performed on samples from individuals with positive and with negative rapid diagnostic test (RDT) results. Dhps K450E and A581G and dhfr I164L were assessed by nested PCR followed by allele-specific primer extension and detection by multiplex bead-based assays. RESULTS: Across populations, Plasmodium falciparum parasite prevalence was 47.9% (1160/2421) by RDT and 71.7 (1763/2421) by qPCR. Median parasite density measured by qPCR in RDT-negative qPCR-positive samples was very low with a median of 2.3 parasites/µL (IQR 0.5-25.2). Resistance genotyping was successfully performed in RDT-positive samples and RDT-negative/qPCR-positive samples with success rates of 86.2% (937/1086) and 55.5% (361/651), respectively. The presence of dhps K540E was high across sites (50.3-87.9%), with strong evidence for differences between sites (p < 0.001). Dhps A581G mutants were less prevalent (12.7-47.2%). The dhfr I164L mutation was found in one sample. CONCLUSIONS: The prevalence of the SP resistance marker dhps K540E exceeds 50% in all four study sites in North and South Kivu, DRC. K540E mutations regularly co-occurred with mutations in dhps A581G but not with the dhfr I164L mutation. The current results do not support implementation of IPTi with SP in the study area.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria/prevention & control , Plasmodium/drug effects , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , Adolescent , Biomarkers/blood , Chemoprevention/statistics & numerical data , Child , Child, Preschool , Democratic Republic of the Congo , Drug Combinations , Female , Humans , Infant , Infant, Newborn , Male
7.
Nature ; 487(7407): 375-9, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22722859

ABSTRACT

Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.


Subject(s)
Biodiversity , High-Throughput Nucleotide Sequencing , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Alleles , Genome, Protozoan , Genotype , Humans , Phylogeny , Plasmodium falciparum/classification , Polymorphism, Single Nucleotide , Principal Component Analysis
8.
Malar J ; 16(1): 113, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28288632

ABSTRACT

BACKGROUND: To assess the effect on malaria prevalence, village specific monthly administrations of pyrimethamine, chlorproguanil, chloroquine or placebo were given to children in four previously treatment-naïve Liberian villages, 1976-78. Plasmodium falciparum in vivo resistance developed to pyrimethamine only. Selection of molecular markers of P. falciparum resistance after 2 years of treatment are reported. METHODS: Blood samples were collected from 191 study children in a survey in 1978. Polymorphisms in pfcrt, pfmdr1, pfdhfr, pfdhps, pfmrp1 and pfnhe1 genes were determined using PCR-based methods. RESULTS: Pfcrt 72-76 CVIET was found in one chloroquine village sample, all remaining samples had pfcrt CVMNK. Pfmdr1 N86 prevalence was 100%. A pfmdr1 T1069ACT→ACG synonymous polymorphism was found in 30% of chloroquine village samples and 3% of other samples (P = 0.008). Variations in pfnhe1 block I were found in all except the chloroquine treated village (P < 0.001). Resistance associated pfdhfr 108N prevalence was 2% in the pyrimethamine village compared to 45-65% elsewhere, including the placebo village (P = 0.001). CONCLUSIONS: Chloroquine treatment possibly resulted in the development of pfcrt 72-76 CVIET. Selection of pfmdr1 T1069ACG and a pfnhe1 block 1 genotypes indicates that chloroquine treatment exerted a selective pressure on P. falciparum. Pyrimethamine resistance associated pfdhfr 108N was present prior to the introduction of any drug. Decreased pfdhfr 108N frequency concurrent with development of pyrimethamine resistance suggests a non-pfdhfr polymorphisms mediated resistance mechanism.


Subject(s)
Antimalarials/administration & dosage , Chloroquine/administration & dosage , Drug Resistance , Plasmodium falciparum/drug effects , Polymorphism, Genetic , Proguanil/analogs & derivatives , Pyrimethamine/administration & dosage , Child , Child, Preschool , Humans , Liberia , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Proguanil/administration & dosage , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Selection, Genetic
9.
Malar J ; 16(1): 150, 2017 04 17.
Article in English | MEDLINE | ID: mdl-28415996

ABSTRACT

BACKGROUND: The I164L mutation on the dhfr gene confers high level resistance to sulfadoxine-pyrimethamine (SP) but it is rare in Africa except in a cluster of reports where prevalence >10% in highland areas of southwest Uganda and eastern Rwanda. The occurrence of the dhfr I164L mutation was investigated in community surveys in this area and examined the relationship to migration. METHODS: A cross-sectional prevalence survey was undertaken in among villages within the catchment areas of two health facilities in a highland site (Kabale) and a highland fringe site (Rukungiri) in 2007. Sociodemographic details, including recent migration, were collected for each person included in the study. A total of 206 Plasmodium falciparum positive subjects were detected by rapid diagnostic test; 203 in Rukungiri and 3 in Kabale. Bloodspot samples were taken and were screened for dhfr I164L. RESULTS: Sequence analysis confirmed the presence of the I164L mutations in twelve P. falciparum positive samples giving an estimated prevalence of 8.6% in Rukungiri. Of the three parasite positive samples in Kabale, none had I164L mutations. Among the twelve I164L positives three were male, ages ranged from 5 to 90 years of age. None of those with the I164L mutation had travelled in the 8 weeks prior to the survey, although three were from households from which at least one household member had travelled during that period. Haplotypes were determined in non-mixed infections and showed the dhfr I164L mutation occurs in both as a N51I + S108N + I164L haplotype (n = 2) and N51I + C59R + S108N + I164L haplotype (n = 5). Genotyping of flanking microsatellite markers showed that the I164L occurred independently on the triple mutant (N51I, C59R + S108N) and double mutant (N51I + S108N) background. CONCLUSIONS: There is sustained local transmission of parasites with the dhfr I164L mutation in Rukungiri and no evidence to indicate its occurrence is associated with recent travel to highly resistant neighbouring areas. The emergence of a regional cluster of I164L in SW Uganda and Rwanda indicates that transmission of I164L is facilitated by strong drug pressure in low transmission areas potentially catalysed in those areas by travel and the importation of parasites from relatively higher transmission settings.


Subject(s)
Drug Resistance , Malaria, Falciparum/parasitology , Mutation, Missense , Plasmodium falciparum/enzymology , Tetrahydrofolate Dehydrogenase/genetics , Travel , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Gene Frequency , Haplotypes , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Male , Middle Aged , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Prevalence , Selection, Genetic , Sequence Analysis, DNA , Surveys and Questionnaires , Uganda/epidemiology , Young Adult
10.
Malar J ; 15: 335, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27339129

ABSTRACT

BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended for prophylactic treatment of malaria in pregnancy while artemisinin combination therapy is the recommended first-line anti-malarial treatment. Selection of SP resistance is ongoing since SP is readily available in health facilities and in private drug shops in sub-Saharan Africa. This study reports on the prevalence and distribution of Pfdhps mutations A540E and A581G in Tanzania. When found together, these mutations confer high-level SP resistance (sometimes referred to as 'super-resistance'), which is associated with loss in protective efficacy of SP-IPTp. METHODS: DNA samples were extracted from malaria-positive blood samples on filter paper, used malaria rapid diagnostic test strips and whole blood collected from eight sites in seven administrative regions of Tanzania. PCR-RFLP and SSOP-ELISA techniques were used to genotype the A540E and A581G Pfdhps. Data were analysed using SPSS version 18 while Chi square and/or Fischer Exact tests were used to compare prevalence between regions. RESULTS: A high inter-regional variation of Pfdhps-540E was observed (χ(2) = 76.8, p < 0.001). High inter-regional variation of 581G was observed (FE = 85.3, p < 0.001). Both Tanga and Kagera were found to have the highest levels of SP resistance. A high prevalence of Pfdhps-581G was observed in Tanga (56.6 %) in northeastern Tanzania and in Kagera (20.4 %) in northwestern Tanzania and the 540-581 EG haplotype was found at 54.5 and 19.4 %, respectively. Pfdhps-581G was not detected in Pwani and Lindi regions located south of Tanga region. CONCLUSIONS: Selection of SP super-resistant Pfdhps A581G is highest in northern Tanzania. Variation in distribution of SP resistance is observed across the country: northeastern Tanga region and northwestern Kagera region have highest prevalence of SP super-resistance markers, while in Pwani and Lindi in the southeast the prevalence of super-resistance was zero. More studies should be conducted to understand the factors underlying the remarkable heterogeneity in SP resistance in the country.


Subject(s)
Antimalarials/pharmacology , Dihydropteroate Synthase/genetics , Drug Resistance , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Drug Combinations , Gene Frequency , Genotyping Techniques , Humans , Malaria, Falciparum/parasitology , Mutation, Missense , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Tanzania
11.
Malar J ; 15(1): 575, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27899115

ABSTRACT

BACKGROUND: Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS: Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS: Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS: SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.


Subject(s)
Antimalarials/therapeutic use , Genetic Variation , Malaria, Falciparum/drug therapy , Plasmodium falciparum/classification , Plasmodium falciparum/drug effects , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Child, Preschool , Drug Combinations , Drug Resistance , Female , Gene Frequency , Genome, Protozoan , Genotype , Humans , Infant , Malawi , Male , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA
12.
Trop Med Int Health ; 20(12): 1621-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26325263

ABSTRACT

OBJECTIVES: To estimate where intermittent preventive treatment (IPTp) using sulphadoxine-pyrimethamine (SP) could be withdrawn as an intervention due to declining malaria transmission intensity, or due to increasing prevalence of the Plasmodium falciparum dihydropteroate synthetase resistance mutation at codon 581G. METHODS: We conducted a systematic review and meta-analysis of protection against the incidence of low birth weight (LBW) conferred by ≥2 doses of IPTp-SP. We matched these outcomes to a proxy measure of malaria incidence in women of the same studies, applied meta-regression models to these data and conducted sensitivity analysis of the 581G mutation. RESULTS: Variation in the protective effect of IPTp-SP against LBW could not be explained by malaria transmission intensity. Among primi- and secundigravidae, IPTp-SP protected against LBW where 581G was ≤10.1% [odds ratio (OR): 0.49; 95% confidence intervals (CI): 0.29, 0.81; P = <0.01] and 581G was >10.1% (OR = 0.73; 95% CI: 0.29, 1.81; P = 0.03). Random-effects models among multigravidae showed that IPTp-SP protects against LBW where 581G was ≤10.1% (OR = 0.56; 95% CI: 0.37, 0.86; P = 0.07), a finding of borderline statistical significance. No evidence of protection against LBW was observed where 581G was >10.1% (OR = 0.96; 95% CI: 0.70, 1.34; P = 0.47). CONCLUSION: There appears to be a prevalence of 581G above which IPTp-SP no longer protects against LBW. Pregnancy studies are urgently needed where 581G is >10.1% to define the specific prevalence threshold where new strategies should be deployed.


Subject(s)
Drug Resistance/genetics , Infant, Low Birth Weight , Malaria, Falciparum/prevention & control , Mutation , Plasmodium falciparum/genetics , Pregnancy Complications, Parasitic/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Africa South of the Sahara/epidemiology , Antimalarials/therapeutic use , Dihydropteroate Synthase/genetics , Drug Combinations , Female , Gravidity , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Pregnancy , Pregnancy Complications, Parasitic/parasitology
13.
Trop Med Int Health ; 20(6): 773-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25689689

ABSTRACT

OBJECTIVE: To examine the association between travel (recency of travel, transmission intensity at destination compared to origin and duration of travel) and confirmed malaria in Uganda. METHODS: Health facility-based case-control study in highland (~2200 m), and highland fringe (~1500 m) areas with adjustment for other covariates. RESULTS: In the highland site, patients who had travelled to areas of higher transmission intensity than their home (origin) areas recently were nearly seven times more likely to have confirmed malaria than those who had not (OR 6.9; P = 0.01, 95% CI: 1.4-33.1). In the highland fringe site, there was also a statistically significant association between travel and malaria (OR 2.1; P = 0.04, 95% CI: 1.1-3.9). CONCLUSIONS: For highland areas, or areas of low malaria transmission, health authorities need to consider internal migrants when designing malaria control programs. Control interventions should include information campaigns reminding residents in these areas of the risk of malaria infection through travel and to provide additional mosquito nets for migrants to use during travel. Health authorities may wish to improve diagnosis in health facilities in highland areas by adding travel history to malaria case definitions. Where routine monitoring data are used to evaluate the impact of interventions on the malaria burden in highland areas, health authorities and donors need ensure that only cases from the local area and not 'imported cases' are counted.


Subject(s)
Malaria/epidemiology , Travel , Adolescent , Adult , Case-Control Studies , Female , Geography , Humans , Malaria/transmission , Male , Population Surveillance , Risk Factors , Uganda/epidemiology
14.
J Infect Dis ; 209(11): 1808-15, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24338354

ABSTRACT

Malaria is a global public health challenge, with drug resistance a major barrier to disease control and elimination. To meet the urgent need for better treatments and vaccines, a deeper knowledge of Plasmodium biology and malaria epidemiology is required. An improved understanding of the genomic variation of malaria parasites, especially the most virulent Plasmodium falciparum (Pf) species, has the potential to yield new insights in these areas. High-throughput sequencing and genotyping is generating large amounts of genomic data across multiple parasite populations. The resulting ability to identify informative variants, particularly single-nucleotide polymorphisms (SNPs), will lead to the discovery of intra- and inter-population differences and thus enable the development of genetic barcodes for diagnostic assays and clinical studies. Knowledge of genetic variability underlying drug resistance and other differential phenotypes will also facilitate the identification of novel mutations and contribute to surveillance and stratified medicine applications. The PlasmoView interactive web-browsing tool enables the research community to visualise genomic variation and annotation (eg, biological function) in a geographic setting. The first release contains over 600,000 high-quality SNPs in 631 Pf isolates from laboratory strains and four malaria-endemic regions (West Africa, East Africa, Southeast Asia and Oceania).


Subject(s)
Genome, Protozoan/genetics , Internet , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Base Sequence , DNA, Protozoan/genetics , Humans , Malaria, Falciparum/epidemiology , Molecular Sequence Annotation
15.
Emerg Infect Dis ; 20(8): 1280-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25061906

ABSTRACT

Super-resistant Plasmodium falciparum threatens the effectiveness of sulfadoxine-pyrimethamine in intermittent preventive treatment for malaria during pregnancy. It is characterized by the A581G Pfdhps mutation on a background of the double-mutant Pfdhps and the triple-mutant Pfdhfr. Using samples collected during 2004-2008, we investigated the evolutionary origin of the A581G mutation by characterizing microsatellite diversity flanking Pfdhps triple-mutant (437G+540E+581G) alleles from 3 locations in eastern Africa and comparing it with double-mutant (437G+540E) alleles from the same area. In Ethiopia, both alleles derived from 1 lineage that was distinct from those in Uganda and Tanzania. Uganda and Tanzania triple mutants derived from the previously characterized southeastern Africa double-mutant lineage. The A581G mutation has occurred multiple times on local Pfdhps double-mutant backgrounds; however, a novel microsatellite allele incorporated into the Tanzania lineage since 2004 illustrates the local expansion of emergent triple-mutant lineages.


Subject(s)
Drug Resistance , Folic Acid Antagonists/pharmacology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Adolescent , Alleles , Child , Child, Preschool , Dihydropteroate Synthase/genetics , Drug Resistance/genetics , Ethiopia/epidemiology , Gene Frequency , Haplotypes , Humans , Infant , Microsatellite Repeats , Mutation , Plasmodium falciparum/genetics , Tanzania/epidemiology , Tetrahydrofolate Dehydrogenase/genetics , Uganda/epidemiology , Young Adult
16.
Malar J ; 13: 264, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25007802

ABSTRACT

BACKGROUND: Resistance to anti-malarials is a major public health problem worldwide. After deployment of artemisinin-based combination therapy (ACT) there have been reports of reduced sensitivity to ACT by malaria parasites in South-East Asia. In Tanzania, artemether-lumefantrine (ALu) is the recommended first-line drug in treatment of uncomplicated malaria. This study surveyed the distribution of the Plasmodium falciparum multidrug resistance protein-1 single nucleotide polymorphisms (SNPs) associated with increased parasite tolerance to ALu, in Tanzania. METHODS: A total of 687 Plasmodium falciparum positive dried blood spots on filter paper and rapid diagnostic test strips collected by finger pricks from patients attending health facilities in six regions of Tanzania mainland between June 2010 and August 2011 were used. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to detect Pfmdr1 SNPs N86Y, Y184F and D1246Y. RESULTS: There were variations in the distribution of Pfmdr1 polymorphisms among regions. Tanga region had exceptionally high prevalence of mutant alleles, while Mbeya had the highest prevalence of wild type alleles. The haplotype YFY was exclusively most prevalent in Tanga (29.6%) whereas the NYD haplotype was the most prevalent in all other regions. Excluding Tanga and Mbeya, four, most common Pfmdr1 haplotypes did not vary between the remaining four regions (χ² = 2.3, p = 0.512). The NFD haplotype was the second most prevalent haplotype in all regions, ranging from 17% - 26%. CONCLUSION: This is the first country-wide survey on Pfmdr1 mutations associated with ACT resistance. Distribution of individual Pfmdr1 mutations at codons 86, 184 and 1246 varies throughout Tanzanian regions. There is a general homogeneity in distribution of common Pfmdr1 haplotypes reflecting strict implementation of ALu policy in Tanzania with overall prevalence of NFD haplotype ranging from 17 to 26% among other haplotypes. With continuation of ALu as first-line drug this haplotype is expected to keep rising, thus there is need for continued pharmacovigilance studies to monitor any delayed parasite clearance by the drug.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Ethanolamines/pharmacology , Fluorenes/pharmacology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Artemether, Lumefantrine Drug Combination , Child , Child, Preschool , Drug Combinations , Epidemiological Monitoring , Female , Gene Frequency , Genotype , Haplotypes , Humans , Infant , Infant, Newborn , Malaria, Falciparum/epidemiology , Male , Middle Aged , Mutation, Missense , Plasmodium falciparum/genetics , Point Mutation , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Tanzania/epidemiology , Young Adult
17.
Malar J ; 13: 392, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25277367

ABSTRACT

BACKGROUND: Even though Plasmodium vivax has the widest worldwide distribution of the human malaria species and imposes a serious impact on global public health, the investigation of genetic diversity in this species has been limited in comparison to Plasmodium falciparum. Markers of genetic diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. METHODS: The genetic diversity of eight P. vivax populations (n=543) was investigated by using two microsatellites (MS), m1501 and m3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. RESULTS: In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax populations, with the highest divergence found between Asian and South American populations, yet the majority of the diversity (~89%) was found to exist within rather than between populations. CONCLUSIONS: The MS markers used were informative in both global and local P. vivax population comparisons and their seven and eight bp repeat length facilitated population comparison using data from independent studies. A complex spatial pattern of MS polymorphisms among global P. vivax populations was observed which has potential utility in future epidemiological studies of the P. vivax parasite.


Subject(s)
Malaria, Vivax/parasitology , Microsatellite Repeats , Plasmodium vivax/genetics , Asia , Genetic Variation , Humans , South America , Sudan
18.
J Infect Dis ; 207(5): 848-59, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23225897

ABSTRACT

BACKGROUND: Intermittent preventive treatment in infants (IPTi) is the administration of sulfadoxine-pyrimethamine (SP) at 2, 3, and 9 months of age to prevent malaria. We investigated the influence of IPTi on drug resistance. METHODS: Twenty-four areas were randomly assigned to receive or not receive IPTi. Blood collected during representative household surveys at baseline and 15 and 27 months after implementation was tested for SP and resistance markers. RESULTS: The frequency of SP in blood was similar in the IPTi and comparison areas at baseline and at 15 months. dhfr and dhps mutations were also similar at baseline and then increased similarly in both arms after 15 months of SP-IPTi. First-line treatment was switched from SP to artemether-lumefantrine before the final survey, when SP positivity fell among infants in comparison areas but increased in IPTi areas. This was accompanied by an increase in dhfr but not dhps mutations in IPTi areas (P = .004 and P = .18, respectively). CONCLUSIONS: IPTi did not increase drug pressure or the selection on dhfr and dhps mutants, when SP was the first-line malaria treatment. Introduction of artemether-lumefantrine was followed by an increase in dhfr mutations, consistent with weak selection attributable to SP-IPTi, but not by an increase in dhps mutations, suggesting a fitness cost of this mutation.


Subject(s)
Antimalarials/administration & dosage , Drug Administration Schedule , Drug Resistance , Malaria/prevention & control , Malaria/parasitology , Plasmodium/drug effects , Pyrimethamine/administration & dosage , Sulfadoxine/administration & dosage , Antimalarials/blood , Antimalarials/pharmacology , Drug Combinations , Female , Humans , Infant , Male , Mutation , Peptide Synthases/genetics , Pyrimethamine/blood , Pyrimethamine/pharmacology , Selection, Genetic , Sulfadoxine/blood , Sulfadoxine/pharmacology , Tanzania , Tetrahydrofolate Dehydrogenase/genetics
19.
Int J Infect Dis ; 139: 41-49, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016502

ABSTRACT

OBJECTIVES: Partial artemisinin resistance, mediated by Plasmodium falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa that are historically associated with high-level antimalarial resistance. The Democratic Republic of Congo (DRC) borders these areas in the East. This study aimed to determine the prevalence of resistance markers in six National Malaria Control Program surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi, and Rutshuru. METHODS: The single nucleotide polymorphisms (SNPs) in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt were assessed using targeted next-generation sequencing of isolates collected at enrollment in therapeutic efficacy studies. RESULTS: PfK13 SNPs were detected in two samples: in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced sulfadoxine-pyrimethamine chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS: R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed artemisinin-based combination therapies-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Democratic Republic of the Congo/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation , Uganda , Protozoan Proteins/genetics
20.
Antimicrob Agents Chemother ; 57(9): 4595-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23836177

ABSTRACT

Sequence variation in the asparagine/aspartate-rich domain of pfmdr1 in 215 isolates of Plasmodium falciparum from three African countries was compared with published data. The role of this domain in modulating antimalarial sensitivity has not been established. The pfmdr1 86Y allele was significantly associated with different configurations of the Asn/Asp-rich domain in West and East Africa. In Kenya, a specific form of the Asn/Asp-rich domain was significantly linked to the 86Y, 184Y, and 1246Y haplotype of pfmdr1.


Subject(s)
Drug Resistance/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/genetics , Polymorphism, Genetic , Africa, Eastern , Africa, Western , Alleles , Amino Acid Sequence , Haplotypes , Humans , Malaria, Falciparum/parasitology , Molecular Sequence Data , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/classification , Multidrug Resistance-Associated Proteins/metabolism , Phylogeography , Plasmodium falciparum/metabolism , Protein Structure, Tertiary , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL