Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Transl Med ; 22(1): 124, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297310

ABSTRACT

BACKGROUND: Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients. METHODS: Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7). RESULTS: FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations. CONCLUSIONS: We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.


Subject(s)
Heart Failure , MicroRNAs , Humans , Up-Regulation/genetics , Heart Failure/metabolism , MicroRNAs/metabolism , Fibroblasts/metabolism , Fibrosis
2.
Circ Res ; 128(5): 585-601, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33494625

ABSTRACT

RATIONALE: In diabetic patients, heart failure with predominant left ventricular (LV) diastolic dysfunction is a common complication for which there is no effective treatment. Oxidation of the NOS (nitric oxide synthase) cofactor tetrahydrobiopterin (BH4) and dysfunctional NOS activity have been implicated in the pathogenesis of the diabetic vascular and cardiomyopathic phenotype. OBJECTIVE: Using mice models and human myocardial samples, we evaluated whether and by which mechanism increasing myocardial BH4 availability prevented or reversed LV dysfunction induced by diabetes. METHODS AND RESULTS: In contrast to the vascular endothelium, BH4 levels, superoxide production, and NOS activity (by liquid chromatography) did not differ in the LV myocardium of diabetic mice or in atrial tissue from diabetic patients. Nevertheless, the impairment in both cardiomyocyte relaxation and [Ca2+]i (intracellular calcium) decay and in vivo LV function (echocardiography and tissue Doppler) that developed in wild-type mice 12 weeks post-diabetes induction (streptozotocin, 42-45 mg/kg) was prevented in mGCH1-Tg (mice with elevated myocardial BH4 content secondary to trangenic overexpression of GTP-cyclohydrolase 1) and reversed in wild-type mice receiving oral BH4 supplementation from the 12th to the 18th week after diabetes induction. The protective effect of BH4 was abolished by CRISPR/Cas9-mediated knockout of nNOS (the neuronal NOS isoform) in mGCH1-Tg. In HEK (human embryonic kidney) cells, S-nitrosoglutathione led to a PKG (protein kinase G)-dependent increase in plasmalemmal density of the insulin-independent glucose transporter GLUT-1 (glucose transporter-1). In cardiomyocytes, mGCH1 overexpression induced a NO/sGC (soluble guanylate cyclase)/PKG-dependent increase in glucose uptake via GLUT-1, which was instrumental in preserving mitochondrial creatine kinase activity, oxygen consumption rate, LV energetics (by 31phosphorous magnetic resonance spectroscopy), and myocardial function. CONCLUSIONS: We uncovered a novel mechanism whereby myocardial BH4 prevents and reverses LV diastolic and systolic dysfunction associated with diabetes via an nNOS-mediated increase in insulin-independent myocardial glucose uptake and utilization. These findings highlight the potential of GCH1/BH4-based therapeutics in human diabetic cardiomyopathy. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Biopterins/analogs & derivatives , Diabetic Cardiomyopathies/drug therapy , Myocytes, Cardiac/metabolism , Nitric Oxide Synthase Type I/metabolism , Ventricular Dysfunction, Left/drug therapy , Animals , Biopterins/pharmacology , Biopterins/therapeutic use , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , GTP Cyclohydrolase/metabolism , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Glutathione/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology
3.
FASEB J ; 35(7): e21737, 2021 07.
Article in English | MEDLINE | ID: mdl-34143495

ABSTRACT

Relaxin is an insulin-like hormone with pleiotropic protective effects in several organs, including the liver. We aimed to characterize its role in the control of hepatic metabolism in healthy rats. Sprague-Dawley rats were treated with human recombinant relaxin-2 for 2 weeks. The hepatic metabolic profile was analyzed using UHPLC-MS platforms. Hepatic gene expression of key enzymes of desaturation (Fads1/Fads2) of n-6 and n-3 polyunsaturated fatty acids (PUFAs), of phosphatidylethanolamine (PE) N-methyltransferase (Pemt), of fatty acid translocase Cd36, and of glucose-6-phosphate isomerase (Gpi) were quantified by Real Time-PCR. Activation of 5'AMP-activated protein kinase (AMPK) was analyzed by Western Blot. Relaxin-2 significantly modified the hepatic levels of 19 glycerophospholipids, 2 saturated (SFA) and 1 monounsaturated (MUFA) fatty acids (FA), 3 diglycerides, 1 sphingomyelin, 2 aminoacids, 5 nucleosides, 2 nucleotides, 1 carboxylic acid, 1 redox electron carrier, and 1 vitamin. The most noteworthy changes corresponded to the substantially decreased lysoglycerophospholipids, and to the clearly increased FA (16:1n-7/16:0) and MUFA + PUFA/SFA ratios, suggesting enhanced desaturase activity. Hepatic gene expression of Fads1, Fads2, and Pemt, which mediates lipid balance and liver health, was increased by relaxin-2, while mRNA levels of the main regulator of hepatic FA uptake Cd36, and of the essential glycolysis enzyme Gpi, were decreased. Relaxin-2 augmented the hepatic activation of the hepatoprotector and master regulator of energy homeostasis AMPK. Relaxin-2 treatment also rised FADS1, FADS2, and PEMT gene expression in cultured Hep G2 cells. Our results bring to light the hepatic metabolic features stimulated by relaxin, a promising hepatoprotective molecule.


Subject(s)
Liver/drug effects , Liver/enzymology , Relaxin/pharmacology , Animals , Cell Line, Tumor , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Omega-3/metabolism , Glycerophospholipids/metabolism , Hep G2 Cells , Homeostasis/drug effects , Humans , Lipidomics/methods , Liver/metabolism , Male , Metabolome/drug effects , Phosphatidylethanolamine N-Methyltransferase/metabolism , Phosphatidylethanolamines/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
4.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628443

ABSTRACT

Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucose/therapeutic use , Heart Failure/drug therapy , Humans , Inflammation/complications , Inflammation/drug therapy , Models, Animal , Sodium , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
5.
Am J Transplant ; 21(6): 2056-2066, 2021 06.
Article in English | MEDLINE | ID: mdl-33125788

ABSTRACT

Acute rejection after heart transplantation increases the risk of chronic dysfunction. Disturbances in mitochondrial function may play a contributory role, however, the relationship between histological signs of rejection in the human transplanted heart and expression levels of circulating mitochondrial genes, such as the mitochondrial Ca2+ uniporter (MCU) complex, remains unexplored. We conducted an RNA-sequencing analysis to identify altered mitochondrial genes in serum and to evaluate their diagnostic accuracy for rejection episodes. We included 40 consecutive samples from transplant recipients undergoing routine endomyocardial biopsies. In total, 112 mitochondrial genes were identified in the serum of posttransplant patients, of which 28 were differentially expressed in patients with acute rejection (p < .05). Considering the receiver operating characteristic analysis with an area under the curve (AUC) >0.900 to discriminate patients with moderate or severe degrees of rejection, we found that the MCU system showed a strong capability for detection: MCU (AUC = 0.944, p < .0001), MCU/MCUR1 ratio (AUC = 0.972, p < .0001), MCU/MCUB ratio (AUC = 0.970, p < .0001), and MCU/MICU1 ratio (AUC = 0.970, p < .0001). Mitochondrial alterations are reflected in peripheral blood and are capable of discriminating between patients with allograft rejection and those not experiencing rejection with excellent accuracy. The dysregulation of the MCU complex was found to be the most relevant finding.


Subject(s)
Calcium , Cation Transport Proteins , Allografts/metabolism , Calcium/metabolism , Calcium Channels/genetics , Calcium-Binding Proteins/genetics , Cation Transport Proteins/genetics , Genes, Mitochondrial , Humans , Mitochondrial Membrane Transport Proteins/metabolism
6.
Int J Mol Sci ; 21(20)2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33081064

ABSTRACT

It is well established that adipose tissue, apart from its energy storage function, acts as an endocrine organ that produces and secretes a number of bioactive substances, including hormones commonly known as adipokines. Obesity is a major risk factor for the development of cardiovascular diseases, mainly due to a low grade of inflammation and the excessive fat accumulation produced in this state. The adipose tissue dysfunction in obesity leads to an aberrant release of adipokines, some of them with direct cardiovascular and inflammatory regulatory functions. Inflammation is a common link between obesity and cardiovascular diseases, so this review will summarise the role of the main adipokines implicated in the regulation of the inflammatory processes occurring under the scenario of cardiovascular diseases.


Subject(s)
Adipokines/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Inflammation/metabolism , Adipose Tissue/pathology , Animals , Humans
7.
Pharmacol Res ; 144: 51-65, 2019 06.
Article in English | MEDLINE | ID: mdl-30954631

ABSTRACT

BACKGROUND AND PURPOSE: Recombinant human relaxin-2, serelaxin, is being proved as a novel drug with therapeutic efficacy in some cardiovascular diseases, especially heart failure, a disease whose physiopathology and course are firmly correlated with important alterations in cardiac metabolism. The aim of our present work was to investigate changes in the cardiac metabolome following relaxin-2 treatment. EXPERIMENTAL APPROACH: Sprague-Dawley rats were treated with human recombinant relaxin-2 using osmotic minipumps at a dose of 0.4 mg/kg/day for 2 weeks. Body composition was measured with a nuclear magnetic resonance imaging system seven days after surgery and on the final day of the experiment. The last two days of treatment, respiratory quotient, locomotor activity and energy expenditure were measured with a calorimetric system. The plasma levels of relaxin-2, total cholesterol, high- and low- density lipoproteins (HDL, LDL), triglycerides and the hepatic enzymes glutamic-pyruvic transaminase (GTP) and gamma-glutamyltransferase (GGT) levels were analyzed. The metabolic profiling of both atria from relaxin-2-treated and control rats was carried out using two separate ultra-high performance liquid chromatography (UHPLC)-Time of Flight-MS based platforms analyzing methanol and chloroform/methanol extracts combined with a UHPLC-single quadrupole-MS based platform used to analyze aminoacids and with a methanol/water extract platform that covered polar metabolites. Identified ion features in the methanol extract platform included fatty acids, acyl carnitines, bile acids, monoacylglycerophospholipids, monoetherglycerophospholipids, free sphingoid bases, and oxidized fatty acids. The chloroform / methanol extract platform provided coverage over glycerolipids, cholesterol esters, sphingolipids, diacylglycerophospholipids, and acyl-ether-glycerophospholipids. Gene expression levels of the adipokines adiponectin, leptin and nesfatin-1 in visceral adipose tissue and cardiac gene expression levels of key enzymes of desaturation and elongation of n-6 and n-3 PUFAs were assessed by Real Time-PCR. KEY RESULTS: Twenty-eight metabolites out of three hundred sixty-two were significantly altered by human relaxin-2. These included fifteen glycerophospholipids: three phosphatidylethanolamines (PE) and twelve phosphatidylcholines (PC); eight sphingolipids: three ceramides (Cer) and five sphingomyelins (SM); and also five aminoacids and one carboxylic acid. Interestingly, the majority of changes correspond to lipid classes, twelve of them polyunsaturated diacylglycerophosphatidylcholines with long acyl chains, containing mainly docosahexaenoic acid (22:6) and arachidonic acid (20:4). Atrial levels of Elovl5 (Elongation of very long chain fatty acids protein 5), Fads1 (Δ5-fatty acid desaturase) and Fads2 (Δ6-fatty acid desaturase), key enzymes of elongation and desaturation of n-6 and n-3 PUFAs like arachidonic acid and DHA, respectively, were significantly increased by relaxin-2 treatment. Atrial tissues from rats treated with relaxin-2 showed a significant increase in the mRNA levels of Srebf1, a transcription factor that activates the gene expression of Elovl5, Fads1 and Fads2. The treatment with relaxin-2 significantly decreased the visceral fat mRNA expression levels of adiponectin, leptin and nesfatin-1, adipokines known to exert an important influence on the regulation of cardiovascular function. CONCLUSION AND IMPLICATIONS: Serelaxin (human recombinant relaxin-2) treatment induces significant changes in cardiac major components of the membrane lipid bilayer such as glycerophospholipids and sphingolipids, known to have structural roles but also very relevant regulatory effects in cardiac function. Serelaxin induced also modifications in several aminoacids of high influence in cardiac energy metabolism regulation. Our results highlight the need to further understand the role of relaxin-2 in the regulation of cardiac energy metabolism, in the context of the therapeutic strategies for the treatment of cardiometabolic pathologies as heart failure.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Heart/drug effects , Lipid Metabolism/drug effects , Metabolome/drug effects , Relaxin/pharmacology , Animals , Delta-5 Fatty Acid Desaturase , Humans , Lipidomics , Male , Myocardium/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
8.
Clin Proteomics ; 14: 12, 2017.
Article in English | MEDLINE | ID: mdl-28439213

ABSTRACT

BACKGROUND: Calcific aortic stenosis (CAS) is the most common heart valve disease in the elderly, representing an important economic and social burden in developed countries. Currently, there is no way to predict either the onset or progression of CAS, emphasizing the need to identify useful biomarkers for this condition. METHODS: We performed a multi-proteomic analysis on different kinds of samples from CAS patients and healthy donors: tissue, secretome and plasma. The results were validated in an independent cohort of subjects by immunohistochemistry, western blotting and selected reaction monitoring. RESULTS: Alpha 1 antichymotrypsin (AACT) abundance was altered in the CAS samples, as confirmed in the validation phase. The significant changes observed in the amounts of this protein strongly suggest that it could be involved in the molecular mechanisms underlying CAS. In addition, our results suggest there is enhanced release of AACT into the extracellular fluids when the disease commences. CONCLUSIONS: The significant increase of AACT in CAS patients suggests it fulfils an important role in the physiopathology of this disease. These results permit us to propose that AACT may serve as a potential marker for the diagnosis of CAS, with considerable clinical value.

9.
J Physiol ; 594(11): 3061-77, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26757341

ABSTRACT

KEY POINTS: Two-pore channels (TPCs) were identified as a novel family of endolysosome-targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na(+) channels able to control endolysosomal fusion, a key process in autophagic flux. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure. We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy. We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. ABSTRACT: Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two-pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3-II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild-type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy.


Subject(s)
Autophagy/physiology , Calcium Channels/physiology , Lysosomes/physiology , Myocytes, Cardiac/physiology , Sex Characteristics , Aged , Animals , Animals, Newborn , Atrial Appendage/physiology , Cells, Cultured , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley
10.
J Cell Mol Med ; 19(2): 442-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25382018

ABSTRACT

Mitochondrial dysfunction plays a critical role in the development of ischaemic cardiomyopathy (ICM). In this study, the mitochondrial proteome in the cardiac tissue of ICM patients was analysed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry (MS) for the first time to provide new insights into cardiac dysfunction in this cardiomyopathy. We isolated mitochondria from LV samples of explanted hearts of ICM patients (n = 8) and control donors (n = 8) and used a proteomic approach to investigate the variations in mitochondrial protein expression. We found that most of the altered proteins were involved in cardiac energy metabolism (82%). We focused on ATPA, which is involved in energy production, and dihydrolipoyl dehydrogenase, implicated in substrate utilization, and observed that these molecules were overexpressed and that the changes detected in the processes mediated by these proteins were closely related. Notably, we found that ATPA overexpression was associated with reduction in LV mass (r = -0.74, P < 0.01). We also found a substantial increase in the expression of elongation factor Tu, a molecule implicated in protein synthesis, and PRDX3, involved in the stress response. All of these changes were validated using classical techniques and by using novel and precise selected reaction monitoring analysis and an RNA sequencing approach, with the total heart samples being increased to 24. This study provides key insights that enhance our understanding of the cellular mechanisms related to the pathophysiology of ICM and could lead to the development of aetiology-specific heart failure therapies. ATPA could serve as a molecular target suitable for new therapeutic interventions.


Subject(s)
Adenosine Triphosphatases/metabolism , Heart Ventricles/metabolism , Myocardial Ischemia/metabolism , Female , Heart , Humans , Male , Mass Spectrometry/methods , Middle Aged , Mitochondria/metabolism , Proteome/metabolism
11.
Cell Physiol Biochem ; 37(1): 176-92, 2015.
Article in English | MEDLINE | ID: mdl-26303782

ABSTRACT

BACKGROUND: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. METHODS: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. RESULTS: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. CONCLUSION: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin) and inflammatory (TNF-α) mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.


Subject(s)
Adipokines/metabolism , Apoptosis/physiology , Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Caspase 9/metabolism , Cells, Cultured , Insulin/metabolism , Mice , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Rats , Receptors, Chemokine/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Lab Invest ; 94(6): 645-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24709777

ABSTRACT

Changes in cardiomyocyte cytoskeletal components, a crucial scaffold of cellular structure, have been found in heart failure (HF); however, the altered cytoskeletal network remains to be elucidated. This study investigated a new map of cytoskeleton-linked alterations that further explain the cardiomyocyte morphology and contraction disruption in HF. RNA-Sequencing (RNA-Seq) analysis was performed in 29 human LV tissue samples from ischemic cardiomyopathy (ICM; n=13) and dilated cardiomyopathy (DCM, n=10) patients undergoing cardiac transplantation and six healthy donors (control, CNT) and up to 16 ICM, 13 DCM and 7 CNT tissue samples for qRT-PCR. Gene Ontology analysis of RNA-Seq data demonstrated that cytoskeletal processes are altered in HF. We identified 60 differentially expressed cytoskeleton-related genes in ICM and 58 genes in DCM comparing with CNT, hierarchical clustering determined that shared cytoskeletal genes have a similar behavior in both pathologies. We further investigated MYLK4, RHOU, and ANKRD1 cytoskeletal components. qRT-PCR analysis revealed that MYLK4 was downregulated (-2.2-fold; P<0.05) and ANKRD1 was upregulated (2.3-fold; P<0.01) in ICM patients vs CNT. RHOU mRNA levels showed a statistical trend to decrease (-2.9-fold). In DCM vs CNT, MYLK4 (-4.0-fold; P<0.05) and RHOU (-3.9-fold; P<0.05) were downregulated and ANKRD1 (2.5-fold; P<0.05) was upregulated. Accordingly, MYLK4 and ANKRD1 protein levels were decreased and increased, respectively, in both diseases. Furthermore, ANKRD1 and RHOU mRNA levels were related with LV function (P<0.05). In summary, we have found a new map of changes in the ICM and DCM cardiomyocyte cytoskeleton. ANKRD1 and RHOU mRNA levels were related with LV function which emphasizes their relevance in HF. These new cytoskeletal changes may be responsible for altered contraction and cell architecture disruption in HF patients. Moreover, these results improve our knowledge on the role of cytoskeleton in functional and structural alterations in HF.


Subject(s)
Cytoskeleton/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/analysis , Case-Control Studies , Cluster Analysis , Down-Regulation , Female , Gene Expression Profiling , Heart Ventricles/chemistry , Heart Ventricles/metabolism , Humans , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Up-Regulation
13.
Arterioscler Thromb Vasc Biol ; 33(6): 1435-40, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23520161

ABSTRACT

OBJECTIVE: To investigate the association of the THBD c.1418C>T polymorphism, which encodes for the replacement of Ala455 by Val in thrombomodulin (TM), with venous thromboembolism (VTE), plasma soluble TM, and activated protein C levels. In addition, human umbilical vein endothelial cells (HUVEC) isolated from 100 umbilical cords were used to analyze the relation between this polymorphism and THBD mRNA and TM protein expression. APPROACH AND RESULTS: The THBD c.1418C>T polymorphism was genotyped in 1173 patients with VTE and 1262 control subjects. Levels of soluble TM and activated protein C were measured in 414 patients with VTE (not on oral anticoagulants) and 451 controls. HUVECs were genotyped for the polymorphism and analyzed for THBD mRNA and TM protein expression and for the ability to enhance protein C activation by thrombin. The 1418T allele frequency was lower in patients than in controls (P<0.001), and its presence was associated with a reduced VTE risk, reduced soluble TM levels, and increased circulating activated protein C levels (P<0.001). In cultured HUVEC, the 1418T allele did not influence THBD expression but was associated with increased TM in cell lysates, increased rate of protein C activation, and reduced soluble TM levels in conditioned medium. CONCLUSIONS: The THBD 1418T allele is associated with lower soluble TM, both in plasma and in HUVEC-conditioned medium, and with an increase in functional membrane-bound TM in HUVEC, which could explain the increased activated protein C levels and the reduced VTE risk observed in individuals carrying this allele.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Polymorphism, Genetic , Protein C/genetics , Thrombomodulin/genetics , Venous Thromboembolism/genetics , Adult , Alleles , Case-Control Studies , Cells, Cultured , Endothelial Cells , Female , Genetic Markers , Genotype , Humans , Incidence , Male , Middle Aged , Protein C/metabolism , RNA, Messenger/analysis , Reference Values , Risk Assessment , Solubility , Thrombomodulin/metabolism , Venous Thromboembolism/epidemiology , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics
14.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38539818

ABSTRACT

Heart failure (HF) is a disease related to bioenergetic mitochondrial abnormalities. However, the whole status of molecules involved in the oxidative phosphorylation system (OXPHOS) is unknown. Therefore, we analyzed the OXPHOS transcriptome of human cardiac tissue by RNA-seq analyses (mRNA n = 36; ncRNA n = 30) in HF patients (ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM)) and control subjects. We detected 28 altered genes in these patients, highlighting greater deregulation in ICM. Specifically, we found a general overexpression of complex V (ATP synthase) elements, among them, ATP5I (ICM, FC = 2.04; p < 0.01), ATP5MJ (ICM, FC = 1.33, p < 0.05), and ATP5IF1 (ICM, FC = 1.81; p < 0.001), which presented a significant correlation with established echocardiographic parameters of cardiac remodeling and ventricular function as follows: left ventricular end-systolic (p < 0.01) and end-diastolic (p < 0.01) diameters, and ejection fraction (p < 0.05). We also detected an increase in ATP5IF1 protein levels (ICM, FC = 1.75; p < 0.01) and alterations in the microRNA expression levels of miR-208b-3p (ICM, FC = -1.44, p < 0.001), miR-483-3p (ICM, FC = 1.37, p < 0.01), regulators of ATP5I. Therefore, we observed the deregulation of the OXPHOS transcriptome in ICM patients, highlighting the overexpression of complex V and its relationship with cardiac remodeling and function.

15.
Biomark Res ; 12(1): 49, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735964

ABSTRACT

Long non-coding RNAs (lncRNAs) are closely implicated in biological processes and diseases with high inflammatory components. These molecules exhibit significant temporal and tissue specificity. However, the expression and function of lncRNAs have not been studied in patients after heart transplantation. Thus, we aimed to identify circulating lncRNAs in these patients and evaluate their diagnostic capacity as potential biomarkers for the non-invasive detection of acute cellular rejection (ACR). For them, we performed a transcriptomic study based on ncRNA-seq technology to detect lncRNAs in serum samples, matched to routine endomyocardial biopsies, from patients without rejection episode (0R, n = 12) and with mild (1R, n = 16) or moderate-severe (≥ 2R, n = 12) ACR. We identified 11,062 circulating lncRNAs in the serum of patients after heart transplantation. Moreover, 6 lncRNAs showed statistically significant expression when the different ACR grades were compared. Among them, AC008105.3, AC006525.1, AC011455.8, AL359220.1, and AC025279.1 had relevant diagnostic capacity for detection of ≥ 2R (AUC of 0.850 to 1.000) and 1R (AUC of 0.750 to 0.854) grades, along with high specificity and positive predictive values (≥ 83%). In addition, AL359220.1 and AC025279.1 were independent predictors for the presence of moderate-severe ACR (odds ratio = 31.132, p < 0.01 and C statistic = 0.939, p < 0.0001; odds ratio = 18.693, p < 0.05 and C statistic = 0.902, p < 0.001; respectively). In conclusion, we describe, for the first time, circulating lncRNAs after heart transplantation as potential candidates for non-invasive detection of ACR. AL359220.1 and AC025279.1 showed excellent diagnostic capability correlating with the severity episode and were strong independent predictors of rejection.

16.
Biochem Pharmacol ; 223: 116157, 2024 May.
Article in English | MEDLINE | ID: mdl-38518995

ABSTRACT

Recombinant human relaxin-2 (serelaxin) has been widely proven as a novel drug with myriad effects at different cardiovascular levels, which support its potential therapeutic efficacy in several cardiovascular diseases (CVD). Considering these effects, together with the influence of relaxin-2 on adipocyte physiology and adipokine secretion, and the connection between visceral adipose tissue (VAT) dysfunction and the development of CVD, we could hypothesize that relaxin-2 may regulate VAT metabolism. Our objective was to evaluate the impact of a 2-week serelaxin treatment on the proteome and lipidome of VAT from Sprague-Dawley rats. We found that serelaxin increased 1 polyunsaturated fatty acid and 6 lysophosphatidylcholines and decreased 4 triglycerides in VAT employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) based platforms, and that regulates 47 phosphoproteins using SWATH/MS analysis. Through RT-PCR, we found that serelaxin treatment also caused an effect on VAT lipolysis through an increase in the mRNA expression of hormone-sensitive lipase (HSL) and a decrease in the expression of adipose triglyceride lipase (ATGL), together with a reduction in the VAT expression of the fatty acid transporter cluster of differentiation 36 (Cd36). Serelaxin also caused an anti-inflammatory effect in VAT by the decrease in the mRNA expression of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), chemerin, and its receptor. In conclusion, our results highlight the regulatory role of serelaxin in the VAT proteome and lipidome, lipolytic function, and inflammatory profile, suggesting the implication of several mechanisms supporting the potential benefit of serelaxin for the prevention of obesity and metabolic disorders.


Subject(s)
Cardiovascular Diseases , Relaxin , Humans , Rats , Animals , Lipid Metabolism , Proteome , Intra-Abdominal Fat/metabolism , Lipidomics , Relaxin/pharmacology , Relaxin/metabolism , Rats, Sprague-Dawley , Vasodilator Agents/pharmacology , Cardiovascular Diseases/metabolism , RNA, Messenger/genetics , Adipose Tissue/metabolism , Recombinant Proteins/metabolism
17.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37507877

ABSTRACT

Ischemic cardiomyopathy (ICM) is associated with abnormal microRNA expression levels that involve an altered gene expression profile. However, little is known about the underlying causes of microRNA disruption in ICM and whether microRNA maturation is compromised. Therefore, we focused on microRNA maturation defects analysis and the implication of the microRNA biogenesis pathway and redox-sensitive microRNAs (redoximiRs). Transcriptomic changes were investigated via ncRNA-seq (ICM, n = 22; controls, n = 8) and mRNA-seq (ICM, n = 13; control, n = 10). The effect of hypoxia on the biogenesis of microRNAs was evaluated in the AC16 cell line. ICM patients showed a reduction in microRNA maturation compared to control (4.30 ± 0.94 au vs. 5.34 ± 1.07 au, p ˂ 0.05), accompanied by a deregulation of the microRNA biogenesis pathway: a decrease in pre-microRNA export (XPO5, FC = -1.38, p ˂ 0.05) and cytoplasmic processing (DICER, FC = -1.32, p ˂ 0.01). Both processes were regulated by hypoxia in AC16 cells (XPO5, FC = -1.65; DICER1, FC = -1.55; p ˂ 0.01; Exportin-5, FC = -1.81; Dicer, FC = -1.15; p ˂ 0.05). Patients displayed deregulation of several redoximiRs, highlighting miR-122-5p (FC = -2.41, p ˂ 0.001), which maintained a good correlation with the ejection fraction (r = 0.681, p ˂ 0.01). We evidenced a decrease in microRNA maturation mainly linked to a decrease in XPO5-mediated pre-microRNA export and DICER1-mediated processing, together with a general effect of hypoxia through deregulation of biogenesis pathway and the redoximiRs.

18.
Transplantation ; 107(9): 2064-2072, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37606906

ABSTRACT

BACKGROUND: There is a dire need for specific, noninvasive biomarkers that can accurately detect cardiac acute cellular rejection (ACR) early. Previously, we described miR-144-3p as an excellent candidate for detecting grade ≥2R ACR. Now, we investigated the combination of miR-144-3p with miR-652-3p, other differentially expressed serum miRNA we previously described, to improve diagnostic accuracy mainly in mild rejection to avoid reaching severe stages. METHODS: We selected miR-652-3p from a preliminary RNA-seq study to be validated by reverse transcription-quantitative polymerase chain reaction on 212 consecutive serum samples from transplantation recipients undergoing routine endomyocardial biopsies to subsequently combine them with miR-144-3p results and investigate their diagnostic capability. RESULTS: We confirmed the miR-652-3p overexpression (P < 0.0001) and its capability to discriminate between patients with and without ACR of any grade (P < 0.0001). The combined serum levels of miR-144-3p and miR-652-3p were significantly higher in patients with rejection regardless of posttransplantation time (P < 0.0001). This combination resulted in a diagnostic efficacy for 1R (area under the curve = 0.794) and ≥2R (area under the curve = 0.892; P < 0.0001) that was superior to each biomarker alone. Furthermore, it was a strong independent predictor of ACR for 1R (odds ratio of 10.950; P < 0.0001) and ≥2R (odds ratio of 14.289; P < 0.01). CONCLUSIONS: We demonstrated that an appropriate combination of blood-based biomarkers could exhibit greater efficiency for cardiac rejection diagnosis. The combined detection of abnormal expression of miR-144-3p and miR-652-3p in the serum of ACR patients can improve the diagnostic sensitivity of rejection at an early stage and contribute to increasing the diagnostic accuracy, mainly in the lower rejection grades.


Subject(s)
Heart Transplantation , MicroRNAs , Humans , Heart Transplantation/adverse effects , Heart , MicroRNAs/genetics , Early Diagnosis , Biomarkers
19.
Transplantation ; 107(2): 466-474, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35939381

ABSTRACT

BACKGROUND: Given the central role of sarcomeric dysfunction in cardiomyocyte biology and sarcomere alterations described in endomyocardial biopsies of transplant patients with rejection, we hypothesized that the serum expression levels of genes encoding sarcomeric proteins were altered in acute cellular rejection (ACR). The aim of this study is to identify altered sarcomere-related molecules in serum and to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS: Serum samples from transplant recipients undergoing routine endomyocardial biopsies were included in an RNA sequencing analysis (n = 40). Protein concentrations of alpha-cardiac actin were determined using a specific enzyme-linked immunoassay (n = 80). RESULTS: We identified 17 sarcomeric genes differentially expressed in patients with clinically relevant rejection (grade ≥2R ACR). A receiver operating characteristic curve was done to assess their accuracy for ACR detection and found that 6 relevant actins, myosins, and other sarcomere-related genes showed great diagnostic capacity with an area under the curve (AUC) > 0.800. Specifically, the gene encoding alpha-cardiac actin ( ACTC1 ) showed the best results (AUC = 1.000, P < 0.0001). We determine ACTC1 protein levels in a larger patient cohort, corroborating its overexpression and obtaining a significant diagnostic capacity for clinically relevant rejection (AUC = 0.702, P < 0.05). CONCLUSIONS: Sarcomeric alterations are reflected in peripheral blood of patients with allograft rejection. Because of their precision to detect ACR, we propose sarcomere ACTC1 serum expression levels as potential candidate for to be included in the development of molecular panel testing for noninvasive ACR detection.


Subject(s)
Heart Transplantation , Transplants , Humans , Actins/genetics , Heart Transplantation/adverse effects , Graft Rejection/diagnosis , Graft Rejection/genetics , Graft Rejection/pathology , Transplantation, Homologous
20.
Biomed Pharmacother ; 161: 114535, 2023 May.
Article in English | MEDLINE | ID: mdl-36931025

ABSTRACT

The pharmacological inhibition of sodium-glucose cotransporter 2 (SGLT2) has emerged as a treatment for patients with type 2 diabetes mellitus (T2DM), cardiovascular disease and/or other metabolic disturbances, although some of the mechanisms implicated in their beneficial effects are unknown. The SGLT2 inhibitor (SGLT2i) empagliflozin has been suggested as a regulator of adiposity, energy metabolism, and systemic inflammation in adipose tissue. The aim of our study was to evaluate the impact of a 6-week-empagliflozin treatment on the lipidome of visceral (VAT) and subcutaneous adipose tissue (SAT) from diabetic obese Zucker Diabetic Fatty (ZDF) rats using an untargeted metabolomics approach. We found that empagliflozin increases the content of diglycerides and oxidized fatty acids (FA) in VAT, while in SAT, it decreases the levels of several lysophospholipids and increases 2 phosphatidylcholines. Empagliflozin also reduces the expression of the cytokines interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor-alpha (TNFα), monocyte-chemotactic protein-1 (MCP-1) and IL-10, and of Cd86 and Cd163 M1 and M2 macrophage markers in VAT, with no changes in SAT, except for a decrease in IL-1ß. Empagliflozin treatment also shows an effect on lipolysis increasing the expression of hormone-sensitive lipase (HSL) in SAT and VAT and of adipose triglyceride lipase (ATGL) in VAT, together with a decrease in the adipose content of the FA transporter cluster of differentiation 36 (CD36). In conclusion, our data highlighted differences in the VAT and SAT lipidomes, inflammatory profiles and lipolytic function, which suggest a distinct metabolism of these two white adipose tissue depots after the empagliflozin treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Rats , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Lipidomics , Rats, Zucker , Diabetes Mellitus, Type 2/metabolism , Subcutaneous Fat/metabolism , Subcutaneous Fat/pathology , Obesity/complications , Obesity/drug therapy , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL