Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768789

ABSTRACT

Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders.


Subject(s)
Glucagon , Glucose , Animals , Humans , Rats , Adipose Tissue, White/metabolism , Diet, High-Fat , Dopamine , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucose/metabolism , Insulin/metabolism , Rats, Wistar
2.
Life Sci ; 336: 122306, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38030055

ABSTRACT

Obesity-related chronic low-grade inflammation may trigger insulin resistance and type 2 diabetes (T2D) development. Cells with regulatory phenotype have been shown to be reduced during obesity, especially CD4+ Treg cells. However, little is known about the CD8+ Treg cells. Therefore, we aim to characterize the CD8+ Treg cells in human peripheral blood and adipose tissue, specifically, to address the effect of obesity and insulin resistance in this regulatory immune cell population. A group of 42 participants with obesity (OB group) were recruited. Fourteen of them were evaluated pre- and post-bariatric surgery. A group of age- and sex-matched healthy volunteers (n = 12) was also recruited (nOB group). CD8+ Treg cell quantification and phenotype were evaluated by flow cytometry, in peripheral blood (PB), subcutaneous (SAT), and visceral adipose tissues (VAT). The OB group displayed a higher percentage of CD8+ Treg cells in PB, compared to the nOB. In addition, they were preferentially polarized into Tc1- and Tc1/17-like CD8+ Treg cells, compared to nOB. Moreover, SAT displayed the highest content of CD8+ Tregs infiltrated, compared to PB or VAT, while CD8+ Tregs infiltrating VAT displayed a higher percentage of cells with Tc1-like phenotype. Participants with pre-diabetes displayed a reduced percentage of TIM-3+CD8+ Tregs in circulation, and PD-1+CD8+ Tregs infiltrated in the VAT. An increase in the percentage of circulating Tc1-like CD8+ Treg cells expressing PD-1 was observed post-surgery. In conclusion, obesity induces significant alterations in CD8+ Treg cells, affecting their percentage and phenotype, as well as the expression of important immune regulatory molecules.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , T-Lymphocytes, Regulatory , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/genetics , Programmed Cell Death 1 Receptor/metabolism , Obesity/metabolism , CD8-Positive T-Lymphocytes/metabolism
3.
Metabolism ; 153: 155788, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219974

ABSTRACT

Adipose tissue dysfunction is more related to insulin resistance than body mass index itself and an alteration in adipose tissue function is thought to underlie the shift from metabolically healthy to unhealthy obesity. Herein, we performed a clustering analysis that revealed distinct visceral adipose tissue gene expression patterns in patients with obesity at distinct stages of metabolic dysregulation. We have built a cross-sectional cohort that aims at reflecting the evolution of the metabolic sequelae of obesity with the main objective to map the sequential events that play a role in adipose tissue dysfunction from the metabolically healthy (insulin-sensitive) state to several incremental degrees of metabolic dysregulation, encompassing insulin resistance establishment, pre-diabetes, and type 2 diabetes. We found that insulin resistance is mainly marked by the downregulation of adipose tissue vasculature remodeling-associated gene expression, suggesting that processes like angiogenesis and adaptative expansion/retraction ability suffer early dysregulation. Prediabetes was characterized by compensatory growth factor-dependent signaling and increased response to hypoxia, while type 2 diabetes was associated with loss of cellular response to insulin and hypoxia and concomitant upregulation of inflammatory markers. Our findings suggest a putative sequence of dysregulation of biological processes that is not linear and has multiple distinct phases across the metabolic dysregulation process, ultimately culminating in the climax of adipose tissue dysfunction in type 2 diabetes. Several studies have addressed the transcriptomic changes in adipose tissue of patients with obesity. However, to the best of our knowledge, this is the first study unraveling the potential molecular mechanisms associated with the multi-step evolution of adipose tissue dysfunction along the metabolic sequelae of obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/genetics , Cross-Sectional Studies , Insulin Resistance/genetics , Intra-Abdominal Fat , Insulin , Disease Progression , Hypoxia , Obesity/genetics
4.
Biomedicines ; 11(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36830982

ABSTRACT

Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.

5.
Intern Emerg Med ; 18(5): 1287-1302, 2023 08.
Article in English | MEDLINE | ID: mdl-37014495

ABSTRACT

Recently, compelling evidence points to dysbiosis and disruption of the epithelial intestinal barrier as major players in the pathophysiology of metabolic disorders, such as obesity. Upon the intestinal barrier disruption, components from bacterial metabolism and bacteria itself can reach peripheral tissues through circulation. This has been associated with the low-grade inflammation that characterizes obesity and other metabolic diseases. While circulating bacterial DNA has been postulated as a common feature of obesity and even type 2 diabetes, almost no focus has been given to the existence and effects of bacteria in peripheral tissues, namely the adipose tissue. As a symbiont population, it is expected that gut microbiota modulate the immunometabolism of the host, thus influencing energy balance mechanisms and inflammation. Gut inflammatory signals cause direct deleterious inflammatory responses in adipose tissue and may also affect key gut neuroendocrine mechanisms governing nutrient sensing and energy balance, like incretins and ghrelin, which play a role in the gut-brain-adipose tissue axis. Thus, it is of major importance to disclose how gut microbiota and derived signals modulate neuroendocrine and inflammatory pathways, which contribute to the dysfunction of adipose tissue and to the metabolic sequelae of obesity and related disorders. This review summarizes the current knowledge regarding these topics and identifies new perspectives in this field of research, highlighting new pathways toward the reduction of the inflammatory burden of metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Endotoxemia , Metabolic Diseases , Humans , Endotoxemia/complications , Endotoxemia/metabolism , Diabetes Mellitus, Type 2/complications , Dysbiosis/complications , Dysbiosis/metabolism , Dysbiosis/microbiology , Inflammation , Metabolic Diseases/metabolism , Obesity/complications , Adipose Tissue
6.
Nutrients ; 15(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630771

ABSTRACT

Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.


Subject(s)
Anxiety , Rodentia , Female , Male , Animals , Anxiety Disorders , Prefrontal Cortex , gamma-Aminobutyric Acid
7.
Nutrients ; 15(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36904281

ABSTRACT

Obesogenic environments such as Westernized diets, overnutrition, and exposure to glycation during gestation and lactation can alter peripheral neuroendocrine factors in offspring, predisposing for metabolic diseases in adulthood. Thus, we hypothesized that exposure to obesogenic environments during the perinatal period reprograms offspring energy balance mechanisms. Four rat obesogenic models were studied: maternal diet-induced obesity (DIO); early-life obesity induced by postnatal overfeeding; maternal glycation; and postnatal overfeeding combined with maternal glycation. Metabolic parameters, energy expenditure, and storage pathways in visceral adipose tissue (VAT) and the liver were analyzed. Maternal DIO increased VAT lipogenic [NPY receptor-1 (NPY1R), NPY receptor-2 (NPY2R), and ghrelin receptor], but also lipolytic/catabolic mechanisms [dopamine-1 receptor (D1R) and p-AMP-activated protein kinase (AMPK)] in male offspring, while reducing NPY1R in females. Postnatally overfed male animals only exhibited higher NPY2R levels in VAT, while females also presented NPY1R and NPY2R downregulation. Maternal glycation reduces VAT expandability by decreasing NPY2R in overfed animals. Regarding the liver, D1R was decreased in all obesogenic models, while overfeeding induced fat accumulation in both sexes and glycation the inflammatory infiltration. The VAT response to maternal DIO and overfeeding showed a sexual dysmorphism, and exposure to glycotoxins led to a thin-outside-fat-inside phenotype in overfeeding conditions and impaired energy balance, increasing the metabolic risk in adulthood.


Subject(s)
Maternal Nutritional Physiological Phenomena , Obesity, Maternal , Prenatal Exposure Delayed Effects , Animals , Female , Male , Pregnancy , Rats , Adipose Tissue/metabolism , Diet, High-Fat , Energy Metabolism , Liver/metabolism , Obesity/metabolism , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/metabolism
8.
Obes Rev ; 22(2): e13130, 2021 02.
Article in English | MEDLINE | ID: mdl-32815267

ABSTRACT

The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.


Subject(s)
Adipose Tissue/metabolism , Gastrointestinal Tract/metabolism , Metabolic Syndrome , Adipokines , Diabetes Mellitus, Type 2 , Humans , Insulin Resistance , Metabolic Syndrome/drug therapy , Obesity
9.
Nutrients ; 13(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445015

ABSTRACT

Oxidative stress is involved in the metabolic dysregulation of type 2 diabetes (DM2). Acrocomia aculeata (Aa) fruit pulp has been described for the treatment of several diseases, and recently we have proved that its leaves have phenolic compounds with a marked antioxidant effect. We aimed to assess whether they can improve metabolic, redox and vascular functions in DM2. Control Wistar (W-Ctrl) and non-obese type 2 diabetic Goto-Kakizaki (GK-Ctrl) rats were treated for 30 days with 200 mg.kg-1 aqueous extract of Aa (EA-Aa) (Wistar, W-EA-Aa/GK, GK-EA-Aa). EA-Aa was able to reduce fasting glycaemia and triglycerides of GK-EA-Aa by improving proteins related to glucose and lipid metabolism, such as GLUT-4, PPARγ, AMPK, and IR, when compared to GK-Ctrl. It also improved viability of 3T3-L1 pre-adipocytes exposed by H2O2. EA-Aa also increased the levels of catalase in the aorta and kidney, reduced oxidative stress and increased relaxation of the aorta in GK-treated rats in relation to GK-Ctrl, in addition to the protective effect against oxidative stress in HMVec-D cells. We proved the direct antioxidant potential of the chemical compounds of EA-Aa, the increase in antioxidant defences in a tissue-specific manner and hypoglycaemic properties, improving vascular function in type 2 diabetes. EA-Aa and its constituents may have a therapeutic potential for the treatment of DM2 complications.


Subject(s)
Antioxidants/pharmacology , Aorta/drug effects , Arecaceae , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetic Angiopathies/drug therapy , Hypoglycemic Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Vasodilation/drug effects , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Antioxidants/isolation & purification , Aorta/metabolism , Aorta/physiopathology , Arecaceae/chemistry , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/etiology , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fruit , Humans , Hypoglycemic Agents/isolation & purification , Lipids/blood , Male , Mice , Plant Extracts/isolation & purification , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL