Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 389(19): 1790-1796, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37937778

ABSTRACT

Immune checkpoint blockade has become standard treatment for many types of cancer. Such therapy is indicated most often in patients with advanced or metastatic disease but has been increasingly used as adjuvant therapy in those with early-stage disease. Adverse events include immune-related organ inflammation resembling autoimmune diseases. We describe a case of severe immune-related gastroenterocolitis in a 4-month-old infant who presented with intractable diarrhea and failure to thrive after in utero exposure to pembrolizumab. Known causes of the symptoms were ruled out, and the diagnosis of pembrolizumab-induced immune-related gastroenterocolitis was supported by the results of histopathological assays, immunophenotyping, and analysis of the level of antibodies against programmed cell death protein 1 (PD-1). The infant's condition was successfully treated with prednisolone and infliximab.


Subject(s)
Gastroenteritis , Immune Checkpoint Inhibitors , Neoplasms , Humans , Infant , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Enteritis/chemically induced , Enteritis/diagnosis , Enteritis/drug therapy , Enteritis/immunology , Neoplasms/drug therapy , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Failure to Thrive/chemically induced , Failure to Thrive/immunology , Diarrhea, Infantile/chemically induced , Diarrhea, Infantile/immunology , Gastroenteritis/chemically induced , Gastroenteritis/diagnosis , Gastroenteritis/drug therapy , Gastroenteritis/immunology , Enterocolitis/chemically induced , Enterocolitis/diagnosis , Enterocolitis/drug therapy , Enterocolitis/immunology , Programmed Cell Death 1 Receptor/immunology
2.
Ther Drug Monit ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38321598

ABSTRACT

BACKGROUND: Volumetric Absorptive Microsampling (VAMS) is a useful tool for therapeutic drug monitoring (TDM) of oral targeted anticancer agents. VAMS aims to improve safety and efficacy by enabling at-home blood sample collection by patients. This study aimed to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometry method for the quantitative determination of abiraterone, alectinib, cabozantinib, imatinib, olaparib, sunitinib, and the metabolites, Δ(4)-abiraterone (D4A), alectinib-M4, imatinib-M1, and N-desethyl sunitinib, in dried whole blood samples using VAMS to support TDM. METHODS: After the collection of 10 µL of whole blood sample using the VAMS device, the analytes were extracted from the tip using methanol with shaking, evaporated, and reconstituted in acetonitrile:0.1 mol/L ammonium hydroxide in water (1:1, vol/vol). The extracts were then analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. Validation experiments based on the ICH M10 guideline were carried out, and stability was evaluated under shipping and storage conditions. VAMS specimens were collected in the outpatient clinic to demonstrate the applicability of the assay. RESULTS: The validated range of the method was considered accurate and precise for all analytes. Accordingly, the validation experiments met the relevant requirements, except for cross-analyte interference. Based on the stability data, shipment can be performed at room temperature within 14 days after sample collection and the VAMS specimen can be stored up to 9 months at -20 and -70°C. Samples from 59 patients were collected at the hospital. CONCLUSIONS: The developed method could be used to successfully quantify the concentrations of abiraterone, D4A, alectinib, alectinib-M4, cabozantinib, imatinib, imatinib-M1, olaparib, sunitinib, and N-desethyl sunitinib within the validated range using VAMS. Therefore, the method can be used to estimate the dried whole blood-to-plasma ratios for TDM in the clinic.

3.
Pharm Res ; 40(12): 3001-3010, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37821768

ABSTRACT

BACKGROUND: Abiraterone acetate is an irreversible 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC) patients. Inhibition of this enzyme leads to low testosterone and cortisol levels in blood. There is growing evidence that clinical efficacy of abiraterone is related to the rate of suppression of serum testosterone. However, quantification of very low levels of circulating testosterone is challenging. We therefore aimed to investigate whether circulating cortisol levels could be used as a surrogate biomarker for CYP17 inhibition in patients with mCRPC treated with abiraterone acetate. PATIENTS AND METHODS: mCRPC patients treated with abiraterone acetate were included. Abiraterone and cortisol levels were measured with a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). On treatment cortisol and abiraterone concentrations were related to treatment response and progression free survival. RESULTS: In total 117 patients were included with a median cortisol concentration of 1.13 ng/ml (range: 0.03 - 82.2) and median abiraterone trough concentration (Cmin) of 10.2 ng/ml (range: 0.58 - 92.1). In the survival analyses, abiraterone Cmin ≥ 8.4 ng/mL and cortisol < 2.24 ng/mL were associated with a longer prostate-specific antigen (PSA) independent progression-free survival than patients with an abiraterone concentration ≥ 8.4 ng/mL and a cortisol concentration ≥ 2.24 ng/mL (13.8 months vs. 3.7 months). CONCLUSION: Our study shows that cortisol is not an independent predictor of abiraterone response in patients with mCRPC, but it is of added value in combination with abiraterone levels, to predict a response on abiraterone.


Subject(s)
Abiraterone Acetate , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Abiraterone Acetate/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Hydrocortisone , Steroid 17-alpha-Hydroxylase , Chromatography, Liquid , Tandem Mass Spectrometry , Treatment Outcome , Prostate-Specific Antigen/therapeutic use , Testosterone/therapeutic use
4.
J Oncol Pharm Pract ; 29(4): 899-904, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35377726

ABSTRACT

INTRODUCTION: Aprepitant is used for the treatment of chemotherapy induced nausea and vomiting. A liquid formulation is needed for treatment of young children. However, the commercial (powder for) suspension was not available worldwide for a prolonged period of time and, therefore, a 10 mg/mL aprepitant oral suspension was extemporarily prepared to prevent suboptimal antiemetic treatment. The current pharmacokinetic study was developed to investigate whether this extemporaneous oral suspension offers an appropriate treatment option. METHODS: From 49 pediatric patients (0.7-17.9 years) 235 plasma concentrations were collected. Patients were either treated with our extemporaneous oral suspension (n = 26; 53%), commercially available capsules (n = 18; 37%), or the intravenous prodrug formulation of aprepitant (fosaprepitant, n = 5; 10%). Pharmacokinetic analyses were performed using nonlinear mixed effects modelling. RESULTS: A one-compartment model adequately described the pharmacokinetics of aprepitant in children. The bioavailability of the extemporaneous oral suspension was not significantly different to that of the capsules (P = 0.26). The observed bioavailability throughout the total population was 83% (95% CI 69%-97%). The absorption of the extemporaneous oral suspension was 39.4% (95%CI 19.5-57.4%) faster than that of capsules (mean absorption time of 1.78 h (95%CI 1.32-2.35), but was comparable to that of the commercial oral suspension. The median area under the curve after (fos)aprepitant was 22.2 mg/L*h (range 8.9-50.3 mg/L*h) on day 1. CONCLUSION: Our extemporaneous oral suspension is an adequate alternative for the commercially (un)available oral suspension in young children. An adequate exposure to aprepitant in children was yielded and the bioavailability of the extemporaneous suspension was comparable to capsules.


Subject(s)
Antiemetics , Humans , Child , Child, Preschool , Aprepitant , Capsules/adverse effects , Antiemetics/therapeutic use , Vomiting/chemically induced , Vomiting/drug therapy , Vomiting/prevention & control , Nausea/chemically induced , Suspensions
5.
Biomed Chromatogr ; 37(7): e5519, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36208186

ABSTRACT

Bioanalytical method development and validation for the quantification of antileishmanial drugs are pivotal to support clinical trials and provide the data necessary to conduct pharmacokinetic (PK) analysis. This review provides a comprehensive overview of published validated bioanalytical assays for the quantification of antileishmanial drugs amphotericin B, miltefosine, paromomycin, pentamidine, and pentavalent antimonials in human matrices. The applicability of the assays for leishmaniasis clinical trials as well as their relevance to PK studies with emphasis on the choice of matrix, calibration range, sample volume, sample preparation, choice of internal standards, separation, and detection was discussed for each antileishmanial drug. Given that no published bioanalytical methods included multiple antileishmanial drugs in a single assay although antileishmanial shortened combination regimens currently were under investigation, it was recommended to combine various drugs in a single bioanalytical method. Furthermore, bioanalytical method development regarding target site matrix as well as applying microsampling strategies was recommended to optimize future clinical PK studies in leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmaniasis , Humans , Antiprotozoal Agents/therapeutic use , Pentamidine/therapeutic use , Leishmaniasis/drug therapy , Amphotericin B/therapeutic use
6.
Pharmacol Res ; 178: 105954, 2022 04.
Article in English | MEDLINE | ID: mdl-34700018

ABSTRACT

Abemaciclib is the third cyclin-dependent kinase (CDK) 4/6 inhibitor approved for the treatment of breast cancer and currently under investigation for other malignancies, including brain cancer. Primarily CYP3A4 metabolizes abemaciclib, forming three active metabolites (M2, M20 and M18) that are likely relevant for abemaciclib efficacy and toxicity. We investigated the impact of ABCB1 (P-gp), ABCG2 (BCRP) and CYP3A on the pharmacokinetics and tissue distribution of abemaciclib and its metabolites using genetically modified mice. In vitro, abemaciclib was efficiently transported by hABCB1 and mAbcg2, and slightly by hABCG2, but the active metabolites were transported even better. Upon oral administration of 10 mg/kg abemaciclib, absence of Abcg2 and especially Abcb1a/1b significantly increased the plasma AUC0-24 h and Cmax of M2 and M18. Furthermore, the relative brain penetration of abemaciclib, M2 and M20 was dramatically increased by 25-, 4- and 60-fold, respectively, in Abcb1a/1b;Abcg2-/- mice, and to a lesser extent in single Abcb1a/1b- or Abcg2-deficient mice. The recovery of all active compounds in the small intestine content was profoundly reduced in Abcb1a/1b;Abcg2-/- mice, with smaller effects in single Abcb1a/1b-/- and Abcg2-/- mice. Our results indicate that Abcb1a/1b and Abcg2 cooperatively and profoundly limit the brain penetration of abemaciclib and its active metabolites, and likely also participate in their hepatobiliary or direct intestinal elimination. Moreover, transgenic human CYP3A4 drastically reduced the abemaciclib plasma AUC0-24 h and Cmax by 7.5- and 5.6-fold, respectively, relative to Cyp3a-/- mice. These insights may help to optimize the clinical development of abemaciclib, especially for the treatment of brain malignancies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Aminopyridines , Benzimidazoles , Cytochrome P-450 CYP3A , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Aminopyridines/metabolism , Aminopyridines/pharmacology , Animals , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Brain/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Dogs , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Pharmaceutical Preparations/metabolism
7.
Ther Drug Monit ; 44(4): 520-526, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35094002

ABSTRACT

BACKGROUND: Most patients with cancer treated with everolimus experience stomatitis, which seriously affects the quality of life. The salivary concentrations of everolimus may predict the incidence and severity of stomatitis. The authors aimed to examine whether it was feasible to quantify the everolimus concentration in saliva and subsequently use it to predict stomatitis. METHODS: Saliva and whole blood samples were taken from patients with cancer, who were treated with everolimus in the dosage of either 10 mg once a day or 5 mg twice a day. Everolimus concentrations in saliva samples were measured by liquid chromatography-tandem mass spectrometry. A published population pharmacokinetic model was extended with the everolimus concentration in saliva to assess any association between everolimus in the blood and saliva. Subsequently, the association between the occurrence of stomatitis and the everolimus concentration in saliva was studied. RESULTS: Eleven patients were included in this study; saliva samples were available from 10 patients, including 3 patients with low-grade stomatitis. Everolimus concentrations were more than 100-fold lower in saliva than in whole blood (accumulation ratio 0.00801 and relative standard error 32.5%). Interindividual variability (67.7%) and residual unexplained variability (84.0%) were high. The salivary concentration of everolimus tended to be higher in patients with stomatitis, 1 hour postdose ( P = 0.14). CONCLUSIONS: Quantification of the everolimus concentration in saliva was feasible and revealed a nonsignificant correlation between everolimus concentration in the saliva and the occurrence of stomatitis. If future research proves this relationship to be significant, the everolimus concentration in the saliva may be used as an early predictor of stomatitis without invasive sampling. Thereby, in patients with high salivary everolimus concentrations, precautions can be taken to decrease the incidence and severity of stomatitis.


Subject(s)
Neoplasms , Stomatitis , Everolimus/adverse effects , Feasibility Studies , Humans , Neoplasms/drug therapy , Quality of Life , Saliva , Stomatitis/chemically induced
8.
Support Care Cancer ; 30(12): 9991-9999, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36287279

ABSTRACT

PURPOSE: Chemotherapy-induced nausea and vomiting (CINV) are common side effects in pediatric oncology treatment. Besides 5-HT3-antagonists, both dexamethasone and aprepitant are cornerstone drugs in controlling these side effects. Based on results of adult studies, the dexamethasone dose is reduced by 50% when combined with aprepitant, because of a drug-drug interaction, even though data on the interaction in children is lacking. The current study was developed to investigate the effect of aprepitant on dexamethasone clearance (CL) in children, in order to assess if dexamethasone dose reduction for concomitant use of aprepitant is appropriate in the current antiemetic regimen. METHODS: In total, 65 children (0.6-17.9 years), receiving intravenous or oral antiemetic therapy (dexamethasone ± aprepitant) as standard of care, were included. 305 dexamethasone plasma concentrations were determined using LC-MS/MS. An integrated dexamethasone and aprepitant pharmacokinetic model was developed using non-linear mixed effects modelling in order to investigate the effect of aprepitant administration on dexamethasone CL. RESULTS: In this population, dexamethasone CL in patients with concomitant administration of aprepitant was reduced by approximately 30% of the uninhibited CL (23.3 L/h (95% confidence interval 20.4-26.0)). This result is not consistent with the results of adult studies (50% reduction). This difference was not age dependent, but might be related to the route of administration of dexamethasone. Future studies are needed to assess the difference in oral/intravenous dexamethasone. CONCLUSION: When dexamethasone is given intravenously as a component of triple therapy to prevent CINV in children, we advise to reduce the dexamethasone dose by 30% instead of 50%.


Subject(s)
Antiemetics , Antineoplastic Agents , Adult , Child , Humans , Aprepitant/therapeutic use , Chromatography, Liquid , Morpholines , Antineoplastic Agents/adverse effects , Tandem Mass Spectrometry , Nausea/chemically induced , Nausea/drug therapy , Nausea/prevention & control , Vomiting/chemically induced , Vomiting/drug therapy , Vomiting/prevention & control , Dexamethasone , Drug Therapy, Combination
9.
Oncologist ; 26(4): 290-e545, 2021 04.
Article in English | MEDLINE | ID: mdl-33296125

ABSTRACT

LESSONS LEARNED: Afatinib and selumetinib can be combined in continuous and intermittent dosing schedules, albeit at lower doses than approved for monotherapy. Maximum tolerated dose for continuous and intermittent schedules is afatinib 20 mg once daily and selumetinib 25 mg b.i.d. Because the anticancer activity was limited, further development of this combination is not recommended until better biomarkers for response and resistance are defined. BACKGROUND: Antitumor effects of MEK inhibitors are limited in KRAS-mutated tumors because of feedback activation of upstream epidermal growth factor receptors, which reactivates the MAPK and the phosphoinositide 3-kinase-AKT pathway. Therefore, this phase I trial was initiated with the pan-HER inhibitor afatinib plus the MEK inhibitor selumetinib in patients with KRAS mutant, PIK3CA wild-type tumors. METHODS: Afatinib and selumetinib were administered according to a 3+3 design in continuous and intermittent schedules. The primary objective was safety, and the secondary objective was clinical efficacy. RESULTS: Twenty-six patients were enrolled with colorectal cancer (n = 19), non-small cell lung cancer (NSCLC) (n = 6), and pancreatic cancer (n = 1). Dose-limiting toxicities occurred in six patients, including grade 3 diarrhea, dehydration, decreased appetite, nausea, vomiting, and mucositis. The recommended phase II dose (RP2D) was 20 mg afatinib once daily (QD) and 25 mg selumetinib b.i.d. (21 days on/7 days off) for continuous afatinib dosing and for intermittent dosing with both drugs 5 days on/2 days off. Efficacy was limited with disease stabilization for 221 days in a patient with NSCLC as best response. CONCLUSION: Afatinib and selumetinib can be combined in continuous and intermittent schedules in patients with KRAS mutant tumors. Although target engagement was observed, the clinical efficacy was limited.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Lung Neoplasms , Pancreatic Neoplasms , Afatinib/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Pancreatic Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins p21(ras)/genetics
10.
Mol Pharm ; 18(12): 4371-4384, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34730366

ABSTRACT

Niraparib (Zejula), a selective oral PARP1/2 inhibitor registered for ovarian, fallopian tube, and primary peritoneal cancer treatment, is under investigation for other malignancies, including brain tumors. We explored the impact of the ABCB1 and ABCG2 multidrug efflux transporters, the OATP1A/1B uptake transporters, and the CYP3A drug-metabolizing complex on oral niraparib pharmacokinetics, using wild-type and genetically modified mouse and cell line models. In vitro, human ABCB1 and mouse Abcg2 transported niraparib moderately. Compared to wild-type mice, niraparib brain-to-plasma ratios were 6- to 7-fold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- but not in single Abcg2-/- mice, while niraparib plasma exposure at later time points was ∼2-fold increased. Niraparib recovery in the small intestinal content was markedly reduced in the Abcb1a/1b-deficient strains. Pretreatment of wild-type mice with oral elacridar, an ABCB1/ABCG2 inhibitor, increased niraparib brain concentration and reduced small intestinal content recovery to levels observed in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deletion did not significantly affect niraparib oral bioavailability or liver distribution but decreased metabolite M1 liver uptake. No significant effects of mouse Cyp3a ablation were observed, but overexpression of transgenic human CYP3A4 unexpectedly increased niraparib plasma exposure. Thus, Abcb1 deficiency markedly increased niraparib brain distribution and reduced its small intestinal content recovery, presumably through reduced biliary excretion and/or decreased direct intestinal excretion. Elacridar pretreatment inhibited both processes completely. Clinically, the negligible role of OATP1 and CYP3A could be advantageous for niraparib, diminishing drug-drug interaction or interindividual variation risks involving these proteins. These findings may support the further clinical development and application of niraparib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Brain/metabolism , Indazoles/pharmacokinetics , Intestines/metabolism , Piperidines/pharmacokinetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Acridines/pharmacology , Animals , Biological Transport , Cytochrome P-450 CYP3A/physiology , Dogs , Madin Darby Canine Kidney Cells , Mice , Tetrahydroisoquinolines/pharmacology , Tissue Distribution
11.
Value Health ; 24(1): 121-128, 2021 01.
Article in English | MEDLINE | ID: mdl-33431146

ABSTRACT

OBJECTIVES: Abiraterone acetate is registered for the treatment of metastatic castration-sensitive and resistant prostate cancer (mCRPC). Treatment outcome is associated with plasma trough concentrations (Cmin) of abiraterone. Patients with a plasma Cmin below the target of 8.4 ng/mL may benefit from treatment optimization by dose increase or concomitant intake with food. This study aims to investigate the cost-effectiveness of monitoring abiraterone Cmin in patients with mCRPC. METHODS: A Markov model was built with health states progression-free survival, progressed disease, and death. The benefits of monitoring abiraterone Cmin followed by a dose increase or food intervention were modeled via a difference in the percentage of patients achieving adequate Cmin taking a healthcare payer perspective. Deterministic and probabilistic sensitivity analyses were performed to assess uncertainties and their impac to the incremental cost-effectiveness ratio (ICER). RESULTS: Monitoring abiraterone followed by a dose increase resulted in 0.149 incremental quality-adjusted life-years (QALYs) with €22 145 incremental costs and an ICER of €177 821/QALY. The food intervention assumed equal effects and estimated incremental costs of €7599, resulting in an ICER of €61 019/QALY. The likelihoods of therapeutic drug monitoring (TDM) with a dose increase or food intervention being cost-effective were 8.04%and 81.9%, respectively. CONCLUSIONS: Monitoring abiraterone followed by a dose increase is not cost-effective in patients with mCRPC from a healthcare payer perspective. Monitoring in combination with a food intervention is likely to be cost-effective. This cost-effectiveness assessment may assist decision making in future integration of abiraterone TDM followed by a food intervention into standard abiraterone acetate treatment practices of mCRPC patients.


Subject(s)
Abiraterone Acetate/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Monitoring/economics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Abiraterone Acetate/blood , Abiraterone Acetate/economics , Aged , Antineoplastic Agents/blood , Antineoplastic Agents/economics , Cost-Benefit Analysis , Disease-Free Survival , Humans , Male , Markov Chains , Prostate-Specific Antigen/blood , Quality-Adjusted Life Years
12.
Int J Cancer ; 146(6): 1631-1642, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31304590

ABSTRACT

Galunisertib (LY2157299), a promising small-molecule inhibitor of the transforming growth factor-beta (TGF-ß) receptor, is currently in mono- and combination therapy trials for various cancers including glioblastoma, hepatocellular carcinoma and breast cancer. Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, the OATP1A/1B uptake transporters and the drug-metabolizing CYP3A complex in galunisertib pharmacokinetics. In vitro, galunisertib was vigorously transported by human ABCB1, and moderately by mouse Abcg2. Orally administered galunisertib (20 mg/kg) was very rapidly absorbed. Galunisertib brain-to-plasma ratios were increased by ~24-fold in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type mice, but not in single Abcg2-/- mice, whereas galunisertib oral availability was not markedly affected. However, recovery of galunisertib in the small intestinal lumen was strongly reduced in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted galunisertib brain accumulation in wild-type mice to equal the levels seen in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deficiency did not alter oral galunisertib pharmacokinetics or liver distribution. Cyp3a-/- mice showed a 1.9-fold higher plasma AUC0-1 hr than wild-type mice, but this difference disappeared over 8 hr. Also, transgenic human CYP3A4 overexpression did not significantly alter oral galunisertib pharmacokinetics. Abcb1 thus markedly restricts galunisertib brain penetration and affects its intestinal disposition, possibly through biliary excretion. Elacridar coadministration could fully inhibit both processes, without causing acute toxicity. Moreover, mouse Cyp3a, but not human CYP3A4, may eliminate galunisertib at high plasma concentrations. These insights may help to guide the further clinical development and application of galunisertib.


Subject(s)
Brain/metabolism , Pyrazoles/pharmacokinetics , Quinolines/pharmacokinetics , Transforming Growth Factor beta/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Acridines/pharmacology , Animals , Brain/drug effects , Cytochrome P-450 CYP3A/metabolism , Dogs , Female , Herb-Drug Interactions , Humans , Madin Darby Canine Kidney Cells , Mice , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Organic Anion Transporters/metabolism , Pyrazoles/blood , Pyrazoles/pharmacology , Quinolines/blood , Quinolines/pharmacology , Signal Transduction/drug effects , Tetrahydroisoquinolines/pharmacology , Tissue Distribution
13.
Br J Cancer ; 122(8): 1166-1174, 2020 04.
Article in English | MEDLINE | ID: mdl-32147669

ABSTRACT

BACKGROUND: Mutations in KRAS result in a constitutively activated MAPK pathway. In KRAS-mutant tumours existing treatment options, e.g. MEK inhibition, have limited efficacy due to resistance through feedback activation of epidermal growth factor receptors (HER). METHODS: In this Phase 1 study, the pan-HER inhibitor dacomitinib was combined with the MEK1/2 inhibitor PD-0325901 in patients with KRAS-mutant colorectal, pancreatic and non-small-cell lung cancer (NSCLC). Patients received escalating oral doses of once daily dacomitinib and twice daily PD-0325901 to determine the recommended Phase 2 dose (RP2D). (Clinicaltrials.gov: NCT02039336). RESULTS: Eight out of 41 evaluable patients (27 colorectal cancer, 11 NSCLC and 3 pancreatic cancer) among 8 dose levels experienced dose-limiting toxicities. The RP2D with continuous dacomitinib dosing was 15 mg of dacomitinib plus 6 mg of PD-0325901 (21 days on/7 days off), but major toxicity, including rash (85%), diarrhoea (88%) and nausea (63%), precluded long-term treatment. Therefore, other intermittent schedules were explored, which only slightly improved toxicity. Tumour regression was seen in eight patients with the longest treatment duration (median 102 days) in NSCLC. CONCLUSIONS: Although preliminary signs of antitumour activity in NSCLC were seen, we do not recommend further exploration of this combination in KRAS-mutant patients due to its negative safety profile.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/administration & dosage , Diphenylamine/analogs & derivatives , ErbB Receptors/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolinones/administration & dosage , Adult , Aged , Aged, 80 and over , Benzamides/adverse effects , Benzamides/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Diphenylamine/administration & dosage , Diphenylamine/adverse effects , Diphenylamine/pharmacokinetics , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Middle Aged , Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Quinazolinones/adverse effects , Quinazolinones/pharmacokinetics
14.
Invest New Drugs ; 38(4): 1085-1095, 2020 08.
Article in English | MEDLINE | ID: mdl-31605293

ABSTRACT

Purpose The objective of this mass balance trial was to determine the excretory pathways and metabolic profile of the novel anticancer agent guadecitabine in humans after administration of a 14C-radiolabeled dose of guadecitabine. Experimental design Included patients received at least one cycle of 45 mg/m2 guadecitabine subcutaneously as once-daily doses on Days 1 to 5 of a 28-day cycle, of which the 5th (last) dose in the first cycle was spiked with 14C-radiolabeled guadecitabine. Using different mass spectrometric techniques in combination with off-line liquid scintillation counting, the exposure and excretion of 14C-guadecitabine and metabolites in the systemic circulation, excreta, and intracellular target site were established. Results Five patients were enrolled in the mass balance trial. 14C-guadecitabine radioactivity was rapidly and almost exclusively excreted in urine, with an average amount of radioactivity recovered of 90.2%. After uptake in the systemic circulation, guadecitabine was converted into ß-decitabine (active anomer), and from ß-decitabine into the presumably inactive metabolites M1-M5. All identified metabolites in plasma and urine were ß-decitabine related products, suggesting almost complete conversion via cleavage of the phosphodiester bond between ß-decitabine and deoxyguanosine prior to further elimination. ß-decitabine enters the intracellular activation pathway, leading to detectable ß-decitabine-triphosphate and DNA incorporated ß-decitabine levels in peripheral blood mononuclear cells, providing confirmation that the drug reaches its DNA target site. Conclusion The metabolic and excretory pathways of guadecitabine and its metabolites were successfully characterized after subcutaneous guadecitabine administration in cancer patients. These data support the clinical evaluation of safety and efficacy of the subcutaneous guadecitabine drug product.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Azacitidine/analogs & derivatives , Neoplasms/metabolism , Aged , Antineoplastic Agents/blood , Antineoplastic Agents/urine , Azacitidine/blood , Azacitidine/pharmacokinetics , Azacitidine/urine , Carbon Radioisotopes , Female , Humans , Male , Middle Aged , Neoplasms/blood , Neoplasms/urine
15.
Anal Biochem ; 610: 113930, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32866463

ABSTRACT

Base J replaces 1% of thymine in most kinetoplastid flagellates, and is implicated in transcription regulation. Base J is synthesized in two steps: first, a thymine base in DNA is converted to 5-hydroxymethyluracil by J-binding proteins (JBP1, JBP2); secondly, a glucosyl transferase glycosylates the 5-hydroxymethyluracil to form base J. Here, we present a highly sensitive and selective LC-MS/MS method to quantify the in vitro JBP1 activity on synthetic oligonucleotide substrates. The method demonstrated successful to support biochemical studies of JBPs and can be used as a template for additional JBP activity studies or for inhibitor screening in the future.


Subject(s)
Chromatography, High Pressure Liquid , DNA-Binding Proteins/metabolism , Protozoan Proteins/metabolism , Tandem Mass Spectrometry , Thymidine/analogs & derivatives , Leishmania/metabolism , Substrate Specificity , Thymidine/analysis , Thymidine/chemistry , Thymidine/metabolism
16.
Pharm Res ; 37(5): 89, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32382808

ABSTRACT

PURPOSE: Capecitabine is an oral pre-pro-drug of the anti-cancer drug 5-fluorouracil (5-FU). The biological activity of the 5-FU degrading enzyme, dihydropyrimidine dehydrogenase (DPD), and the target enzyme thymidylate synthase (TS), are subject to circadian rhythmicity in healthy volunteers. The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), safety, pharmacokinetics (PK) and pharmacodynamics (PD) of capecitabine therapy adapted to this circadian rhythm (chronomodulated therapy). METHODS: Patients aged ≥18 years with advanced solid tumours potentially benefitting from capecitabine therapy were enrolled. A classical dose escalation 3 + 3 design was applied. Capecitabine was administered daily without interruptions. The daily dose was divided in morning and evening doses that were administered at 9:00 h and 24:00 h, respectively. The ratio of the morning to the evening dose was 3:5 (morning: evening). PK and PD were examined on treatment days 7 and 8. RESULTS: A total of 25 patients were enrolled. The MTD of continuous chronomodulated capecitabine therapy was established at 750/1250 mg/m2/day, and was generally well tolerated. Circadian rhythmicity in the plasma PK of capecitabine, dFCR, dFUR and 5-FU was not demonstrated. TS activity was induced and DPD activity demonstrated circadian rhythmicity during capecitabine treatment. CONCLUSION: The MTD of continuous chronomodulated capecitabine treatment allows for a 20% higher dose intensity compared to the approved regimen (1250 mg/m2 bi-daily on day 1-14 of every 21-day cycle). Chronomodulated treatment with capecitabine is promising and could lead to improved tolerability and efficacy of capecitabine.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Capecitabine/administration & dosage , Capecitabine/pharmacology , Drug Chronotherapy , Neoplasms/drug therapy , Adult , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Capecitabine/adverse effects , Capecitabine/blood , Circadian Rhythm , Dihydrouracil Dehydrogenase (NADP)/metabolism , Female , Fluorouracil/blood , Humans , Male , Middle Aged , Thymidylate Synthase/metabolism , Uridine Triphosphate/analogs & derivatives , Uridine Triphosphate/blood
17.
Eur J Clin Pharmacol ; 76(8): 1075-1082, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32430518

ABSTRACT

PURPOSE: The aim of this study was to ascertain whether the absolute bioavailability of oral imatinib (Glivec®) during steady state plasma pharmacokinetics in cancer patients could be determined through a concomitant intravenous administration of a single 100 µg microdose of deuterium labeled imatinib (imatinib-d8). Secondly, the usefulness of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was investigated for simultaneous analysis of orally and intravenously administered imatinib. METHODS: Included patients were on a stable daily dose of 400 mg oral imatinib prior to study participation. On day 1, patients received a 100 µg intravenous imatinib-d8 microdose 2.5 h after intake of the oral dose. Plasma samples were collected for 48 h. Imatinib and imatinib-d8 concentrations were simultaneously quantified using a validated LC-MS/MS assay. The absolute bioavailability was calculated by comparing the dose-normalized exposure with unlabeled and stable isotopically labeled imatinib in plasma. RESULTS: A total of six patients were enrolled. All patients had a history of gastrointestinal stromal tumors (GIST). The median absolute bioavailability of oral imatinib at steady state was 76% (range 44-106%). Imatinib and imatinib-d8 plasma concentrations were quantified in all collected plasma samples, with no samples below the limit of quantification for imatinib-d8. CONCLUSION: The absolute bioavailability of imatinib was successfully estimated at steady state plasma pharmacokinetics using the stable isotopically labeled microdose trial design. This study exhibits the use of a stable isotopically labeled intravenous microdose to determine the absolute bioavailability of an oral anticancer agent in patients with LC-MS/MS as the analytical tool.


Subject(s)
Antineoplastic Agents/administration & dosage , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Administration, Intravenous , Administration, Oral , Aged , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Biological Availability , Chromatography, Liquid , Deuterium , Female , Gastrointestinal Stromal Tumors/blood , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/metabolism , Humans , Imatinib Mesylate/blood , Imatinib Mesylate/pharmacokinetics , Isotope Labeling , Male , Middle Aged , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Tandem Mass Spectrometry
18.
Future Oncol ; 16(11): 619-629, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32125175

ABSTRACT

The clinical benefit of treatment with BRAF- and MEK-inhibitors in melanoma is limited due to resistance associated with emerging secondary mutations. Preclinical and clinical studies have shown that short-term treatment with the HDAC inhibitor vorinostat can eliminate cells harboring these secondary mutations causing resistance. This proof of concept study is to determine the efficacy of sequential treatment with vorinostat and BRAFi/MEKi in resistant BRAFV600E mutant melanoma. The primary aim is demonstrating anti-tumor response of progressive lesions according to RECIST 1.1. Secondary end points are to determine that emerging resistant clones with a secondary mutation in the MAPK pathway can be detected in circulating tumor DNA and purged by short-term vorinostat treatment. Exploratory end points include pharmacokinetic, pharmacodynamic and pharmacogenetic analyses (NCT02836548).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Vorinostat/therapeutic use , Drug Administration Schedule , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Proof of Concept Study , Proto-Oncogene Proteins B-raf/antagonists & inhibitors
19.
Biomed Chromatogr ; 34(1): e4623, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31215049

ABSTRACT

Therapeutic drug monitoring (TDM) has shown to benefit patients treated with drugs of many drug classes, among which is oncology. With an increasing demand for drug monitoring, new assays have to be developed and validated. Guidelines for bioanalytical validation issued by the European Medicines Agency and US Food and Drug Administration are applicable for clinical trials and toxicokinetic studies and demand fully validated bioanalytical methods to yield reliable results. However, for TDM assays a limited validation approach is suggested based on the intended use of these methods. This review presents an overview of publications that describe method validation of assays specifically designed for TDM. In addition to evaluating current practice, we provide recommendations that could serve as a guide for future validations of TDM assays.


Subject(s)
Antineoplastic Agents/analysis , Antineoplastic Agents/pharmacokinetics , Chromatography, Liquid/methods , Drug Monitoring/methods , Tandem Mass Spectrometry/methods , Antineoplastic Agents/therapeutic use , Humans , Linear Models , Neoplasms/drug therapy , Reproducibility of Results , Sensitivity and Specificity
20.
Biomed Chromatogr ; 34(1): e4732, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31691313

ABSTRACT

The bioanalysis of the oral anticancer drug capecitabine and its metabolites has been investigated extensively over the past years. This paper reviews methods for the bioanalysis of capecitabine and its metabolites. The focus of this review will be on sample pre-treatment, chromatography and detection. Furthermore, the choice of standards and analytical problems encountered during analysis of capecitabine and its metabolites in biological matrices will be discussed. The major challenges in the bioanalysis of capecitabine and its metabolites are the simultaneous extraction and analysis due to the differences in polarity of the analytes. Furthermore we evaluate currently described methods for the quantification of capecitabine and its metabolites. Future wishes and perspectives are stated that could serve as an inspiration for further development of assays for the quantification of capecitabine and its metabolites.


Subject(s)
Capecitabine , Chromatography, Liquid , Animals , Capecitabine/analysis , Capecitabine/chemistry , Capecitabine/isolation & purification , Chemical Fractionation , Humans , Mass Spectrometry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL