Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 25(22): 5427-36, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26410074

ABSTRACT

Exploration of the P2 region by mimicking the proline motif found in BILN2061 resulted in the discovery of two series of potent HCV NS3/4A protease inhibitors. X-ray crystal structure of the ligand in contact with the NS3/4A protein and modulation of the quinoline heterocyclic region by structure based design and modeling allowed for the optimization of enzyme potency and cellular activity. This research led to the selection of clinical candidate IDX320 having good genotype coverage and pharmacokinetic properties in various species.


Subject(s)
Drug Discovery , Hepacivirus/drug effects , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Haplorhini , Hepatocytes/enzymology , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/enzymology , Molecular Structure , Rats , Rats, Sprague-Dawley , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
2.
J Med Chem ; 59(5): 1891-8, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26804933

ABSTRACT

Here, we describe the design, synthesis, biological evaluation, and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel aryl-phospho-indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focused on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant. Optimization of the phosphinate aryl substituent led to the discovery of the 3-Me,5-acrylonitrile-phenyl analogue RP-13s (IDX899) having an EC50 of 11 nM against the Y181C/K103N double mutant.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Discovery , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , HIV-1/enzymology , Indoles/pharmacology , Phosphinic Acids/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Cell Line , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , HIV Reverse Transcriptase/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Macaca fascicularis , Male , Models, Molecular , Molecular Structure , Phosphinic Acids/chemical synthesis , Phosphinic Acids/chemistry , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL