Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Development ; 147(12)2020 06 22.
Article in English | MEDLINE | ID: mdl-32467243

ABSTRACT

Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse ß cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.


Subject(s)
Insulin-Secreting Cells/metabolism , Pancreas/metabolism , Signal Transduction , Tretinoin/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Embryo, Mammalian/metabolism , Homeodomain Proteins/genetics , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreas/cytology , Receptors, Retinoic Acid/deficiency , Receptors, Retinoic Acid/genetics , Somatostatin/genetics , Somatostatin/metabolism , Somatostatin-Secreting Cells/cytology , Somatostatin-Secreting Cells/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Trans-Activators/deficiency , Trans-Activators/genetics , Wnt Proteins/metabolism
2.
J Biol Chem ; 296: 100122, 2021.
Article in English | MEDLINE | ID: mdl-33239359

ABSTRACT

Diabetes results from insufficient numbers of functional pancreatic ß-cells. Thus, increasing the number of available functional ß-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand ß-cells for diabetes treatment. Nearly all these studies in ß-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced ß-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for ß-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances ß-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for ß-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in ß-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the ß-cell, its potential for ß-cell regeneration, and its physiological importance for neonatal and adaptive ß-cell expansion.


Subject(s)
Insulin-Secreting Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Proliferation , Cellular Senescence , Glucose/metabolism , Humans , Hyperglycemia/metabolism , Insulin-Secreting Cells/cytology , Promoter Regions, Genetic , Protein Conformation , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/physiology , Structure-Activity Relationship
3.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229169

ABSTRACT

Iron-sulfur clusters (ISCs) are cell-essential cofactors present in ∼60 proteins including subunits of OXPHOS complexes I-III, DNA polymerases, and iron-sensing proteins. Dysfunctions in ISC biosynthesis are associated with anemias, neurodegenerative disorders, and metabolic diseases. To assess consequences of acute ISC inhibition in a whole body setting, we developed a mouse model in which key ISC biosynthetic enzyme NFS1 can be acutely and reversibly suppressed. Contrary to in vitro ISC inhibition and pharmacological OXPHOS suppression, global NFS1 inhibition rapidly enhances lipid utilization and decreases adiposity without affecting caloric intake and physical activity. ISC proteins decrease, including key proteins involved in OXPHOS (SDHB), lipoic acid synthesis (LIAS), and insulin mRNA processing (CDKAL1), causing acute metabolic inflexibility. Age-related metabolic changes decelerate loss of adiposity substantially prolonged survival of mice with NFS1 inhibition. Thus, the observation that ISC metabolism impacts organismal fuel choice will aid in understanding the mechanisms underlying ISC diseases with increased risk for diabetes. Highlights: Acute ISC inhibition leads to rapid loss of adiposity in miceMulti-metabolic pathway disruption upon ISC deficiency blocks energy storageNfs1 inhibition induces glucose dyshomeostasis due to ISC deficiency in ß-cellsEnergy distress caused by inhibition of ISC synthesis is attenuated in aged mice.

4.
Sci Transl Med ; 16(755): eadg3456, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985854

ABSTRACT

Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing ß cells are reduced in number in most people with diabetes, but most individuals still have some residual ß cells. However, none of the many diabetes drugs in common use increases human ß cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human ß cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on ß cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human ß cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human ß cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human ß cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human ß cell mass occurred through mechanisms that included enhanced human ß cell proliferation, function, and survival. The increase in human ß cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.


Subject(s)
Dyrk Kinases , Exenatide , Harmine , Insulin-Secreting Cells , Peptides , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Exenatide/pharmacology , Exenatide/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Harmine/pharmacology , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Mice , Peptides/pharmacology , Peptides/metabolism , Venoms/pharmacology , Venoms/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Drug Therapy, Combination , Cell Proliferation/drug effects , Heterografts
5.
Development ; 137(2): 283-92, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20040494

ABSTRACT

In humans and mice, mutations in the Ret gene result in Hirschsprung's disease and renal defects. In the embryonic kidney, binding of Ret to its ligand, Gdnf, induces a program of epithelial cell remodeling that controls primary branch formation and branching morphogenesis within the kidney. Our previous studies showed that transcription factors belonging to the retinoic acid (RA) receptor family are crucial for controlling Ret expression in the ureteric bud; however, the mechanism by which retinoid-signaling acts has remained unclear. In the current study, we show that expression of a dominant-negative RA receptor in mouse ureteric bud cells abolishes Ret expression and Ret-dependent functions including ureteric bud formation and branching morphogenesis, indicating that RA-receptor signaling in ureteric bud cells is crucial for renal development. Conversely, we find that RA-receptor signaling in ureteric bud cells depends mainly on RA generated in nearby stromal cells by retinaldehyde dehydrogenase 2, an enzyme required for most fetal RA synthesis. Together, these studies suggest that renal development depends on paracrine RA signaling between stromal mesenchyme and ureteric bud cells that regulates Ret expression both during ureteric bud formation and within the developing collecting duct system.


Subject(s)
Kidney/embryology , Retinoids/metabolism , Signal Transduction , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/physiology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Humans , Immunochemistry , In Situ Hybridization , Male , Mice , Morphogenesis/genetics , Morphogenesis/physiology , Organ Culture Techniques , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/physiology , Reverse Transcriptase Polymerase Chain Reaction
6.
Genome Med ; 15(1): 30, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127706

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts. METHODS: We obtained nuclear preparations from fresh human islet cells and generated snRNA-seq datasets. We compared these datasets to scRNA-seq output obtained from human islet cells from the same donor. We employed snRNA-seq to obtain the transcriptomic profile of human islets engrafted in immunodeficient mice. In both analyses, we included the intronic reads in the snRNA-seq data with the GRCh38-2020-A library. RESULTS: First, snRNA-seq analysis shows that the top four differentially and selectively expressed genes in human islet endocrine cells in vitro and in vivo are not the canonical genes but a new set of non-canonical gene markers including ZNF385D, TRPM3, LRFN2, PLUT (ß-cells); PTPRT, FAP, PDK4, LOXL4 (α-cells); LRFN5, ADARB2, ERBB4, KCNT2 (δ-cells); and CACNA2D3, THSD7A, CNTNAP5, RBFOX3 (γ-cells). Second, by integrating information from scRNA-seq and snRNA-seq of human islet cells, we distinguish three ß-cell sub-clusters: an INS pre-mRNA cluster (ß3), an intermediate INS mRNA cluster (ß2), and an INS mRNA-rich cluster (ß1). These display distinct gene expression patterns representing different biological dynamic states both in vitro and in vivo. Interestingly, the INS mRNA-rich cluster (ß1) becomes the predominant sub-cluster in vivo. CONCLUSIONS: In summary, snRNA-seq and pre-mRNA analysis of human islet cells can accurately identify human islet cell populations, subpopulations, and their dynamic transcriptome profile in vivo.


Subject(s)
Islets of Langerhans , Transcriptome , Humans , Mice , Animals , Gene Expression Profiling , RNA Precursors/metabolism , Islets of Langerhans/metabolism , Sequence Analysis, RNA , RNA, Small Nuclear/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis , Potassium Channels, Sodium-Activated/genetics , Potassium Channels, Sodium-Activated/metabolism , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics
7.
Mol Metab ; 78: 101831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925022

ABSTRACT

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a ß-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in ß-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Male , Animals , Female , Mice , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Homeostasis
8.
bioRxiv ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38014078

ABSTRACT

Prior studies have shown that pancreatic α-cells can transdifferentiate into ß-cells, and that ß-cells de-differentiate and are prone to acquire an α-cell phenotype in type 2 diabetes (T2D). However, the specific human α-cell and ß-cell subtypes that are involved in α-to-ß-cell and ß-to-α-cell transitions are unknown. Here, we have integrated single cell RNA sequencing (scRNA-seq) and single nucleus RNA-seq (snRNA-seq) of isolated human islets and human islet grafts and provide additional insight into α-ß cell fate switching. Using this approach, we make seven novel observations. 1) There are five different GCG -expressing human α-cell subclusters [α1, α2, α-ß-transition 1 (AB-Tr1), α-ß-transition 2 (AB-Tr2), and α-ß (AB) cluster] with different transcriptome profiles in human islets from non-diabetic donors. 2) The AB subcluster displays multihormonal gene expression, inferred mostly from snRNA-seq data suggesting identification by pre-mRNA expression. 3) The α1, α2, AB-Tr1, and AB-Tr2 subclusters are enriched in genes specific for α-cell function while AB cells are enriched in genes related to pancreatic progenitor and ß-cell pathways; 4) Trajectory inference analysis of extracted α- and ß-cell clusters and RNA velocity/PAGA analysis suggests a bifurcate transition potential for AB towards both α- and ß-cells. 5) Gene commonality analysis identifies ZNF385D, TRPM3, CASR, MEG3 and HDAC9 as signature for trajectories moving towards ß-cells and SMOC1, PLCE1, PAPPA2, ZNF331, ALDH1A1, SLC30A8, BTG2, TM4SF4, NR4A1 and PSCK2 as signature for trajectories moving towards α-cells. 6) Remarkably, in contrast to the events in vitro , the AB subcluster is not identified in vivo in human islet grafts and trajectory inference analysis suggests only unidirectional transition from α-to-ß-cells in vivo . 7) Analysis of scRNA-seq datasets from adult human T2D donor islets reveals a clear unidirectional transition from ß-to-α-cells compatible with dedifferentiation or conversion into α-cells. Collectively, these studies show that snRNA-seq and scRNA-seq can be leveraged to identify transitions in the transcriptional status among human islet endocrine cell subpopulations in vitro , in vivo , in non-diabetes and in T2D. They reveal the potential gene signatures for common trajectories involved in interconversion between α- and ß-cells and highlight the utility and power of studying single nuclear transcriptomes of human islets in vivo . Most importantly, they illustrate the importance of studying human islets in their natural in vivo setting.

9.
Bio Protoc ; 11(15): e4103, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458397

ABSTRACT

The pancreas is a heavily innervated organ, but pancreatic innervation can be challenging to comprehensively assess using conventional histological methods. However, recent advances in whole-mount tissue clearing and 3D rendering techniques have allowed detailed reconstructions of pancreatic innervation. Optical clearing is used to enhance tissue transparency and reduce light scattering, thus eliminating the need to section the tissue. Here, we describe a modified version of the optical tissue clearing protocol iDISCO+ (immunolabeling-enabled three-dimensional imaging of solvent-cleared organs) optimized for pancreatic innervation and endocrine markers. The protocol takes 13-19 days, depending on tissue size. In addition, we include protocols for imaging using light sheet and confocal microscopes and for 3D segmentation of pancreatic innervation and endocrine cells using Imaris.

10.
Sci Adv ; 6(41)2020 10.
Article in English | MEDLINE | ID: mdl-33036983

ABSTRACT

Understanding the detailed anatomy of the endocrine pancreas, its innervation, and the remodeling that occurs in diabetes can provide new insights into metabolic disease. Using tissue clearing and whole-organ imaging, we identified the 3D associations between islets and innervation. This technique provided detailed quantification of α and ß cell volumes and pancreatic nerve fibers, their distribution and heterogeneity in healthy tissue, canonical mouse models of diabetes, and samples from normal and diabetic human pancreata. Innervation was highly enriched in the mouse endocrine pancreas, with regional differences. Islet nerve density was increased in nonobese diabetic mice, in mice treated with streptozotocin, and in pancreata of human donors with type 2 diabetes. Nerve contacts with ß cells were preserved in diabetic mice and humans. In summary, our whole-organ assessment allows comprehensive examination of islet characteristics and their innervation and reveals dynamic regulation of islet innervation in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Insulin/metabolism , Islets of Langerhans/metabolism , Mice
11.
Diabetes ; 69(8): 1692-1707, 2020 08.
Article in English | MEDLINE | ID: mdl-32381645

ABSTRACT

A failure in self-tolerance leads to autoimmune destruction of pancreatic ß-cells and type 1 diabetes (T1D). Low-molecular-weight dextran sulfate (DS) is a sulfated semisynthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic ß-cells, reduce autoimmunity, and ameliorate T1D is unknown. In this study, we report that DS, but not dextran, protects human ß-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a proinflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in prediabetic NOD mice and, most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases ß-cell death, enhances islet heparan sulfate (HS)/HS proteoglycan expression, and preserves ß-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory costimulatory molecule programmed death-1 (PD-1) in T cells, reduces interferon-γ+CD4+ and CD8+ T cells, and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on ß-cell protection, extracellular matrix preservation, and immunomodulation can reverse diabetes in NOD mice, highlighting its therapeutic potential for the treatment of T1D.


Subject(s)
Autoimmunity/drug effects , Dextran Sulfate/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/drug effects , Animals , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Chemokines/metabolism , Flow Cytometry , Forkhead Transcription Factors/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Immunohistochemistry , Insulin-Secreting Cells/metabolism , Mice , Nitrogen Oxides/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , T-Lymphocytes/metabolism
12.
Nat Metab ; 2(5): 432-446, 2020 05.
Article in English | MEDLINE | ID: mdl-32694660

ABSTRACT

Chronic inflammation is linked to diverse disease processes, but the intrinsic mechanisms that determine cellular sensitivity to inflammation are incompletely understood. Here, we show the contribution of glucose metabolism to inflammation-induced changes in the survival of pancreatic islet ß-cells. Using metabolomic, biochemical and functional analyses, we investigate the protective versus non-protective effects of glucose in the presence of pro-inflammatory cytokines. When protective, glucose metabolism augments anaplerotic input into the TCA cycle via pyruvate carboxylase (PC) activity, leading to increased aspartate levels. This metabolic mechanism supports the argininosuccinate shunt, which fuels ureagenesis from arginine and conversely diminishes arginine utilization for production of nitric oxide (NO), a chief mediator of inflammatory cytotoxicity. Activation of the PC-urea cycle axis is sufficient to suppress NO synthesis and shield cells from death in the context of inflammation and other stress paradigms. Overall, these studies uncover a previously unappreciated link between glucose metabolism and arginine-utilizing pathways via PC-directed ureagenesis as a protective mechanism.


Subject(s)
Arginine/metabolism , Glucose/metabolism , Glucose/pharmacology , Inflammation/prevention & control , Insulin-Secreting Cells/drug effects , Urea Cycle Disorders, Inborn/pathology , Urea/metabolism , Adolescent , Adult , Aged , Aspartic Acid/metabolism , Cell Survival , Citric Acid Cycle/drug effects , Female , Humans , Inflammation/pathology , Insulin-Secreting Cells/pathology , Male , Metabolomics , Middle Aged , Nitric Oxide/metabolism , Pyruvate Carboxylase/metabolism , Urea Cycle Disorders, Inborn/metabolism , Young Adult
13.
Diabetes ; 68(10): 1934-1949, 2019 10.
Article in English | MEDLINE | ID: mdl-31292135

ABSTRACT

Failure to expand pancreatic ß-cells in response to metabolic stress leads to excessive workload resulting in ß-cell dysfunction, dedifferentiation, death, and development of type 2 diabetes. In this study, we demonstrate that induction of Myc is required for increased pancreatic ß-cell replication and expansion during metabolic stress-induced insulin resistance with short-term high-fat diet (HFD) in young mice. ß-Cell-specific Myc knockout mice fail to expand adaptively and show impaired glucose tolerance and ß-cell dysfunction. Mechanistically, PKCζ, ERK1/2, mTOR, and PP2A are key regulators of the Myc response in this setting. DNA methylation analysis shows hypomethylation of cell cycle genes that are Myc targets in islets from young mice fed with a short-term HFD. Importantly, DNA hypomethylation of Myc response elements does not occur in islets from 1-year-old mice fed with a short-term HFD, impairing both Myc recruitment to cell cycle regulatory genes and ß-cell replication. We conclude that Myc is required for metabolic stress-mediated ß-cell expansion in young mice, but with aging, Myc upregulation is not sufficient to induce ß-cell replication by, at least partially, an epigenetically mediated resistance to Myc action.


Subject(s)
Cell Division/physiology , Diet, High-Fat , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Age Factors , Animals , Blood Glucose/metabolism , Cell Proliferation , Insulin-Secreting Cells/cytology , Mice , Mice, Knockout , Phosphorylation , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
14.
Nat Med ; 25(11): 1739-1747, 2019 11.
Article in English | MEDLINE | ID: mdl-31700183

ABSTRACT

Type 2 diabetes is characterized by insulin resistance and a gradual loss of pancreatic beta cell mass and function1,2. Currently, there are no therapies proven to prevent beta cell loss and some, namely insulin secretagogues, have been linked to accelerated beta cell failure, thereby limiting their use in type 2 diabetes3,4. The adipokine adipsin/complement factor D controls the alternative complement pathway and generation of complement component C3a, which acts to augment beta cell insulin secretion5. In contrast to other insulin secretagogues, we show that chronic replenishment of adipsin in diabetic db/db mice ameliorates hyperglycemia and increases insulin levels while preserving beta cells by blocking dedifferentiation and death. Mechanistically, we find that adipsin/C3a decreases the phosphatase Dusp26; forced expression of Dusp26 in beta cells decreases expression of core beta cell identity genes and sensitizes to cell death. In contrast, pharmacological inhibition of DUSP26 improves hyperglycemia in diabetic mice and protects human islet cells from cell death. Pertaining to human health, we show that higher concentrations of circulating adipsin are associated with a significantly lower risk of developing future diabetes among middle-aged adults after adjusting for body mass index (BMI). Collectively, these data suggest that adipsin/C3a and DUSP26-directed therapies may represent a novel approach to achieve beta cell health to treat and prevent type 2 diabetes.


Subject(s)
Complement C3a/genetics , Complement Factor D/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Dual-Specificity Phosphatases/genetics , Insulin-Secreting Cells/drug effects , Mitogen-Activated Protein Kinase Phosphatases/genetics , Animals , Body Mass Index , Cell Dedifferentiation/drug effects , Complement Factor D/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Glucose/metabolism , Humans , Hyperglycemia/drug therapy , Hyperglycemia/genetics , Hyperglycemia/pathology , Insulin/genetics , Insulin Resistance/genetics , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred NOD
15.
Mol Cancer Res ; 15(11): 1531-1541, 2017 11.
Article in English | MEDLINE | ID: mdl-28760782

ABSTRACT

Genetic deletion of cyclin-dependent kinase 4 (Cdk4) is associated with pancreatic beta cell loss and glucose dysregulation in rodents. Palbociclib, one of the first selective CDK4/6 inhibitors approved for the treatment of advanced breast cancer, is currently being investigated as an adjuvant treatment in patients with early-stage breast cancer and in a variety of cancers covering a wide-range of patient populations. Hence, longer chronic toxicity studies were necessary to further examine its safety profile. The effects of different doses and duration of palbociclib administration on glucose and beta cell homeostasis in young (two months) versus aged (12 months) rats was compared. Glucose dysregulation, due to pancreatic beta cell degeneration, was observed in young rats administered the highest dose of palbociclib for 6 months. Abnormal pancreatic islet histology and activation of the endoplasmic reticulum stress response in beta cells were detected after shorter administration with high-dose palbociclib in young rats. To test the hypothesis that palbociclib-associated inhibition of beta cell proliferation will more profoundly affect younger animals that have not achieved replicative quiescence, we administered high-dose palbociclib to aged rats for 6 months. In contrast to the young rats, despite equivalent exposures to palbociclib, no evidence of impaired glucose tolerance, hypoinsulinemia, beta cell vacuolization, or beta cell loss was seen in aged rats. Palbociclib administration induces beta cell failure in young but not aged rats.Implications: Although adult humans receiving palbociclib have not displayed detectable adverse effects on glucose metabolism, the risk of beta cell failure in children remains unexplored. Mol Cancer Res; 15(11); 1531-41. ©2017 AACR.


Subject(s)
Aging/drug effects , Antineoplastic Agents/administration & dosage , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Piperazines/administration & dosage , Pyridines/administration & dosage , Aging/metabolism , Animals , Antineoplastic Agents/adverse effects , Cell Proliferation/drug effects , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Homeostasis/drug effects , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Piperazines/adverse effects , Pyridines/adverse effects , Rats , Rats, Sprague-Dawley
16.
Diabetes ; 65(5): 1283-96, 2016 05.
Article in English | MEDLINE | ID: mdl-26868297

ABSTRACT

Adaptive ß-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for ß-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancreatic islets and ß-cells. PKCζ is required for glucose- and glucokinase activator-induced proliferation of rodent and human ß-cells in vitro. Furthermore, either kinase-dead PKCζ expression (KD-PKCζ) or disruption of PKCζ in mouse ß-cells blocks compensatory ß-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCζ inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCζ activation is key for early compensatory ß-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCζ expression or activity might contribute to inadequate ß-cell mass expansion and ß-cell failure leading to type 2 diabetes.


Subject(s)
Cyclin D2/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin-Secreting Cells/metabolism , Overweight/metabolism , Protein Kinase C/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Proliferation , Cells, Cultured , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Enzyme Activation , Glucose/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/pathology , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Overweight/pathology , Overweight/physiopathology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/chemistry , Protein Kinase C/genetics , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Signal Transduction , Tissue Banks
17.
Mol Endocrinol ; 28(12): 2038-48, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25361392

ABSTRACT

Insulin resistance, when combined with decreased ß-cell mass and relative insufficient insulin secretion, leads to type 2 diabetes. Mice lacking the IRS2 gene (IRS2(-/-) mice) develop diabetes due to uncompensated insulin resistance and ß-cell failure. Hepatocyte growth factor (HGF) activates the phosphatidylinositol 3-kinase/Akt signaling pathway in ß-cells without recruitment of IRS1 or IRS2 and increases ß-cell proliferation, survival, mass, and function when overexpressed in ß-cells of transgenic (TG) mice. We therefore hypothesized that HGF may protect against ß-cell failure in IRS2 deficiency. For that purpose, we cross-bred TG mice overexpressing HGF in ß-cells with IRS2 knockout (KO) mice. Glucose homeostasis analysis revealed significantly reduced hyperglycemia, compensatory hyperinsulinemia, and improved glucose tolerance in TG/KO mice compared with those in KO mice in the context of similar insulin resistance. HGF overexpression also increased glucose-stimulated insulin secretion in IRS2(-/-) islets. To determine whether this glucose homeostasis improvement correlated with alterations in ß-cells, we measured ß-cell mass, proliferation, and death in these mice. ß-Cell proliferation was increased and death was decreased in TG/KO mice compared with those in KO mice. As a result, ß-cell mass was significantly increased in TG/KO mice compared with that in KO mice, reaching levels similar to those in wild-type mice. Analysis of the intracellular targets involved in ß-cell failure in IRS2 deficiency showed Pdx-1 up-regulation, Akt/FoxO1 phosphorylation, and p27 down-regulation in TG/KO mouse islets. Taken together, these results indicate that HGF can compensate for IRS2 deficiency and subsequent insulin resistance by normalizing ß-cell mass and increasing circulating insulin. HGF may be of value as a therapeutic agent against ß-cell failure.


Subject(s)
Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/physiology , Hyperglycemia/therapy , Insulin Receptor Substrate Proteins/deficiency , Insulin-Secreting Cells/metabolism , Animals , Hepatocyte Growth Factor/genetics , Hyperglycemia/genetics , Insulin Receptor Substrate Proteins/genetics , Male , Mice , Mice, Transgenic
18.
Dev Cell ; 26(5): 469-482, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23993789

ABSTRACT

The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome.


Subject(s)
Keratin-5/biosynthesis , Stem Cells/cytology , Urinary Tract/metabolism , Uroplakins/biosynthesis , Urothelium/growth & development , Animals , Biological Transport/genetics , Cell Differentiation/genetics , Epithelium/growth & development , Epithelium/metabolism , Gene Expression Regulation, Developmental , Humans , Mice , Regeneration/genetics , Urinary Tract/cytology , Urinary Tract/growth & development , Uroplakins/metabolism , Urothelium/cytology , Wound Healing
19.
Mol Reprod Dev ; 73(7): 906-17, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16557522

ABSTRACT

We have previously reported that Sertoli cell geometric changes induced by a Fas (CD95) agonist or by restricting Sertoli cell spreading can trigger spermatogenic cell detachment from Sertoli cell surfaces and initiate a programmed cell death sequence. Here, we have focused on ADAM proteins, tetraspanins CD9 and CD81, and the integrin beta1 subunit, which is co-expressed in testis with integrin alpha3 and integrin alpha6 subunits, to understand how these molecules may stabilize spermatogenic cell attachment to Sertoli cell surfaces. Like ADAM proteins, integrin beta1, alpha3, and alpha6 subunits, and CD9 and CD81 transcripts are expressed in the fetal testis and throughout testicular maturation, as well as, in Sertoli-spermatogenic cell co-cultures. Prespermatogonia (gonocytes) display CD9 and CD81 immunoreactive sites. Integrin alpha6 subunit transcripts have unusual developmental characteristics: fetal testis expresses the integrin alpha6B isoform exclusively. In contrast, the integrin alpha6B isoform co-exists with the integrin alpha6A isoform in prepubertal testes and Sertoli-spermatogenic cell co-cultures. A blocking anti body targeting the extracellular domain (N-terminal) of the integrin beta1 subunit causes rapid contraction of Sertoli cells leading to the gradual detachment of associated spermatogenic cells. In contrast, predicted active site peptides targeting the disintegrin domain of ADAM 1, ADAM 2, ADAM 3 (cyritestin), ADAM 4, ADAM 5, ADAM 6, and ADAM 15 (metragidin) do not disturb significantly the attachment of spermatogenic cells to Sertoli cell surfaces. Spermatogenic cells dislodged from their attachment sites by the integrin beta1 subunit blocking antibody display annexin V immunoreactivity, a sign of early apoptosis. Time-lapse videomicroscopy demonstrates that the removal by apoptosis of a single member of a spermatogenic cell cohort inter-connected by cytoplasmic bridges does not affect the remaining members of the cohort. During spermatogenic cell apoptosis, integrin beta1, alpha3, and alpha6 subunits, and tetraspanins CD9 and C81 become displaced away from the developing apoptotic bodies. In contrast, the intermediate filament protein Sak57, a keratin 5 ortholog, concentrates in the developing apoptotic bodies. We propose that the redistribution of integrin-tetraspanin complexes during spermatogenic cell apoptosis may be evidence of a signaling cascade initiated by Sertoli cell geometric changes. As a result, Sertoli cell reduction in surface area may be a limiting factor of spermatogenic cell survival and in the developmental regulation of spermatogenic cell progenies in the intact seminiferous epithelium.


Subject(s)
Antigens, CD/metabolism , Apoptosis/physiology , Integrins/metabolism , Spermatogonia/cytology , Spermatogonia/metabolism , ADAM Proteins/metabolism , Animals , Cells, Cultured , Fusion Regulatory Protein-1/metabolism , Integrases , Integrin alpha3/metabolism , Integrin alpha6/metabolism , Integrin beta1/metabolism , Keratin-5 , Keratins/metabolism , Male , Membrane Glycoproteins/metabolism , Protein Structure, Tertiary , Rats , Sertoli Cells/cytology , Sertoli Cells/metabolism , Tetraspanin 28 , Tetraspanin 29 , Viral Proteins
20.
Mol Reprod Dev ; 68(1): 1-4, 2004 May.
Article in English | MEDLINE | ID: mdl-15039942

ABSTRACT

Specification of primordial germ cells (PGCs) in the proximal epiblast enables about 45 founder PGCs clustered at the base of the allantoic bud to enter the embryo by active cell movement. Specification of the PGC lineage depends on paracrine signals derived from the somatic cell neighbors in the extraembryonic ectoderm. Secretory bone morphogenetic proteins (BMP) 4, BMP8b, and BMP2 and components of the Smad signaling pathway participate in the specification of PGCs. Cells in the extraembryonic ectoderm induce expression of the gene fragilis in the epiblast in the presence of BMP4, targeting competence of PGCs. The fragilis gene encodes a family of transmembrane proteins presumably involved in homotypic cell adhesion. As PGCs migrate throughout the hindgut, they express nanos3 protein. In the absence of nanos3 gene expression, no germ cells are detected in ovary and testis. During migration and upon arrival at the genital ridges, the population of PGCs is regulated by a balanced proliferation/programmed cell death or apoptosis. Paracrine and autocrine mechanisms, involving transforming growth factor-beta1 and fibroblast growth factors exert stimulatory or inhibitory effects on PGCs proliferation, modulated in part by the membrane-bound form of stem cell factor. Apoptosis requires the participation of the pro-apoptotic family member Bax, whose activity is balanced by the anti-apoptotic family member Bcl21/Bcl-x. In addition, a loss of cell-cell contacts in vitro results in the apoptotic elimination of PGCs. It needs to be determined whether apoptosis is triggered by a failure of PGC to establish and maintain appropriate cell-cell contacts with somatic cells or whether undefined survival factors released by adjacent somatic cells cannot reach physiological levels to satisfy needs of the expanding population of PGCs.


Subject(s)
Germ Cells/cytology , Germ Cells/metabolism , Animals , Cell Movement , Cell Survival , Gene Expression Regulation , Growth Substances/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL