Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(35): 24320-24329, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39163142

ABSTRACT

How disorder affects magnetic ordering is always an intriguing question, and it becomes even more interesting in the recently rising high entropy oxides due to the extremely high disorder density. However, due to the lack of high-quality single crystal samples, the strong compositional disorder effect on magnetic transition has not been deeply investigated. In this work, we have successfully synthesized high-quality single crystalline high entropy spinel ferrites (Mg0.2Mn0.2Fe0.2Co0.2Ni0.2)xFe3-xO4. Our findings from high-temperature magnetization and neutron diffraction experiments showed ferrimagnetic transitions at 748, 694, and 674 K for x values of 1, 1.5, and 1.8, respectively. Notably, the magnetic transition almost showed no broadening for x values of 1 and 1.5, compared to Fe3O4. Extended X-ray absorption fine structure measurements provided insights into the elemental distribution among the octahedral and tetrahedral sites. The random distribution of elements across these sites reduced the formation of local clusters and short-range orders, enhancing sample homogeneity and preserving the sharpness of the magnetic transition, despite bond length variation. Our study not only marks the first successful synthesis of an HEO bulk single crystal exhibiting long-range magnetic order but also sheds light on the interaction between high configurational entropy and magnetic orderings. This opens new avenues for future research and applications of magnetic high entropy oxides.

2.
Adv Mater ; 30(51): e1805004, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368943

ABSTRACT

Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.

3.
Nat Commun ; 6: 8485, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26415623

ABSTRACT

Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering.

SELECTION OF CITATIONS
SEARCH DETAIL