Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 155(1): 242-56, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074872

ABSTRACT

The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease.


Subject(s)
Flow Cytometry/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Immune System Diseases/genetics , Polymorphism, Single Nucleotide , Humans , Phenotype
2.
Cytometry A ; 89(3): 259-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26305912

ABSTRACT

Circulating endothelial cells (CEC) and their progenitors (EPC) are restricted subpopulations of peripheral blood (PB), cord blood (CB), and bone marrow (BM) cells, involved in the endothelial homeostasis maintenance. Both CEC and EPC are thought to represent potential biomarkers in several clinical conditions involving endothelial turnover/remodeling. Although different flow cytometry methods for CEC and EPC characterization have been published so far, none of them have reached consistent conclusions, therefore consensus guidelines with respect to CEC and EPC identification and quantification need to be established. Here, we have carried out an in depth investigation of CEC and EPC phenotypes in healthy PB, CB and BM samples, by optimizing a reliable polychromatic flow cytometry (PFC) panel. Results showed that the brightness of CD34 expression on healthy PB and CB circulating cells represents a key benchmark for the identification of CEC (CD45neg/CD34bright/CD146pos) respect to the hematopoietic stem cell (HSC) compartment (CD45dim/CD34pos/CD146neg). This approach, combined with a dual-platform counting technique, allowed a sharp CEC enumeration in healthy PB (n = 38), and resulting in consistent CEC counts with previously reported data (median = 11.7 cells/ml). In parallel, by using rigorous PFC conditions, CD34pos/CD45dim/CD133pos/VEGFR2pos EPC were not found in any healthy PB or CB sample, since VEGFR2 expression was never detectable on the surface of CD34pos/CD45dim/CD133pos cells. Notably, the putative EPC phenotype was observed in all analyzed BM samples (n = 12), and the expression of CD146 and VEGFR2, on BM cells, was not restricted to the CD34bright compartment, but also appeared on the HSC surface. Altogether, our findings suggest that the previously reported EPC antigen profile, defined by the simultaneous expression of VEGFR2 and CD133 on the surface of CD45dim/CD34pos cells, should be carefully re-evaluated and further studies should be conducted to redefine EPC features in order to translate CEC and EPC characterization into clinical practice.


Subject(s)
AC133 Antigen/genetics , Endothelial Progenitor Cells/cytology , Fetal Blood/cytology , Flow Cytometry/standards , Immunophenotyping/standards , Vascular Endothelial Growth Factor Receptor-2/genetics , AC133 Antigen/immunology , Adolescent , Adult , Aged , Antigens, CD34/genetics , Antigens, CD34/immunology , Benchmarking , CD146 Antigen/genetics , CD146 Antigen/immunology , Cell Count , Endothelial Progenitor Cells/immunology , Female , Fetal Blood/immunology , Fluorescent Dyes/chemistry , Gene Expression , Healthy Volunteers , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Male , Middle Aged , Practice Guidelines as Topic , Vascular Endothelial Growth Factor Receptor-2/immunology
3.
J Immunol Methods ; 515: 113443, 2023 04.
Article in English | MEDLINE | ID: mdl-36842524

ABSTRACT

Antigen (ag)-specific T cell analysis is an important step for investigation of cellular immunity in many settings, such as infectious diseases, cancer and vaccines. Multiparameter flow cytometry has advantages in studying both the rarity and heterogeneity of these cells. In the cellular immunologist's toolbox, the expression of activation-induced markers (AIM) following antigen exposure has made possible the study and sorting of ag-specific T cells without using human leukocyte antigen (HLA)-multimers. In parallel, assessing the cytokine profile of responding T cells would support a more comprehensive description of the ongoing immune response by providing information related to cell function, such as polarization and effector activity. Here, a method and flow cytometry panel were optimized to combine the detection of activated CD4+ and CD8+ T cells in a TCR-dependent manner with the evaluation of cytokine production by intracellular staining, without affecting the positivity of activation markers. In particular, the expression of CD134 (OX40) and CD69 have been tested in conjunction with intracellular (ic) CD137 (4-1BB) to detect SARS-CoV-2 Spike protein-specific activated T cells. In our setting, CD134 provided minimal contribution to detect the pool of AIM+ T cells, whereas a key role was described for ic-CD69 which was co-expressed with ic-CD137 in both CD4+ and CD8+ lymphocytes. Moreover, the analysis of TCR-triggered cytokine-producing T cells (IFNγ, TNFα and IL-2 were assessed) further confirmed the capacity of ic-CD69 to identify functionally responsive antigen-specific T cells which were often largely negative or weakly positive for CD134 expression. In parallel, the use of CD45RA, CCR7 and CXCR5 allowed us to describe the T cell matuarion curve and detect T follicular helper (Tfh) CD4+ cells, including the antigen specific activated subsets. In conclusion, we optimized a method and flow cytometry panel combining assessment of activation induced markers and intracellular cytokines that will be useful for measuring TCR stimulation-dependent activation of CD4+ and CD8+ T cells.


Subject(s)
COVID-19 , Cytokines , Humans , Cytokines/metabolism , Flow Cytometry , SARS-CoV-2/metabolism , Lymphocyte Activation , COVID-19/diagnosis , CD8-Positive T-Lymphocytes , Antigens , Receptors, Antigen, T-Cell , CD4-Positive T-Lymphocytes
4.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35724271

ABSTRACT

We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.


Subject(s)
Liver , T-Lymphocyte Subsets , Flow Cytometry/methods , Workflow
5.
Sci Rep ; 11(1): 2681, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514797

ABSTRACT

Endothelial damage and fibro-proliferative vasculopathy of small vessels are pathological hallmarks of systemic sclerosis (SSc). The consequence is the detachment of resident elements that become circulating endothelial cells (CECs). The aim of our study was to evaluate the potential of CECs as biomarker in SSc. We enrolled 50 patients with limited cutaneous (lcSSc) and diffuse cutaneous (dcSSc) subset of SSc, who underwent clinical evaluation to establish the organ involvement. CECs were measured by flow-cytometry utilizing a polychromatic panel. An evident difference was observed in CEC counts comparing controls to SSc patients (median 10.5 vs. 152 cells/ml, p < 0.0001) and for the first time, between the two subsets of disease (median lcSSc 132 vs. dcSSc 716 CEC/ml, p < 0.0001). A significant correlation was established between CECs and some SSc clinical parameters, such as digital ulcers, skin and pulmonary involvement, presence of Scl-70 antibodies, nailfold videocapillaroscopy patterns and EUSTAR activity index. After 12 months, CECs correlated with clinical worsening of patients, showing that a number higher than 414 CEC/ml is a strong negative prognostic factor (RR 5.70). Our results indicate that CECs are a direct indicator of systemic vascular damage. Therefore, they can be used as a reliable marker of disease severity.


Subject(s)
Endothelial Cells/metabolism , Microscopic Angioscopy , Scleroderma, Systemic/blood , Adult , Aged , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Scleroderma, Systemic/pathology , Severity of Illness Index
6.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33795387

ABSTRACT

BACKGROUND: High-risk neuroblastomas (HR-NBs) are rare, aggressive pediatric cancers characterized by resistance to therapy and relapse in more than 30% of cases, despite using an aggressive therapeutic protocol including targeting of GD2. The mechanisms responsible for therapy resistance are unclear and might include the presence of GD2neg/low NB variants and/or the expression of immune checkpoint ligands such as B7-H3. METHOD: Here, we describe a multiparametric flow cytometry (MFC) combining the acquisition of 106 nucleated singlets, Syto16pos CD45neg CD56pos cells, and the analysis of GD2 and B7-H3 surface expression. 41 bone marrow (BM) aspirates from 25 patients with NB, at the onset or relapse, are analyzed, comparing results with cytomorphological analysis (CA) and/or immunohistochemistry (IHC). Spike in experiments assesses the sensitivity of MFC. Kaplan-Meier analysis on 498 primary NBs selects novel prognostic markers possibly integrating the MFC panel. RESULTS: No false positive are detected, and MFC shows high sensitivity (0.0005%). Optimized MFC identifies CD45negCD56pos NB cells in 11 out of 12 (91.6%) of BM indicated as infiltrated by CA, 7 of which coexpress high levels of GD2 and B7-H3. MFC detects CD45negCD56posGD2neg/low NB variants expressing high surface levels of B7-H3 in two patients with HR-NB (stage M) diagnosed at 53 and 139 months of age. One of them has a non-MYCN amplified tumor with unusual THpos PHOX2Bneg phenotype, which relapsed 141 months post-diagnosis with BM infiltration and a humerus lesion. All GD2neg/low NB variants are detected in patients at relapse. Kaplan-Meier analysis highlights an interesting dichotomous prognostic value of MML5, ULBPs, PVR, B7-H6, and CD47, ligands involved in NB recognition by the immune system. CONCLUSIONS: Our study validates a sensitive MFC analysis providing information on GD2 and B7-H3 surface expression and allowing fast, specific and sensitive evaluation of BM tumor burden. With other routinely used diagnostic and prognostic tools, MFC can improve diagnosis, prognosis, orienting novel personalized treatments in patients with GD2low/neg NB, who might benefit from innovative therapies combining B7-H3 targeting.


Subject(s)
B7 Antigens/analysis , Biomarkers, Tumor/analysis , Flow Cytometry , Gangliosides/analysis , Neuroblastoma/immunology , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Humans , Infant , Male , Neuroblastoma/diagnosis , Neuroblastoma/mortality , Neuroblastoma/therapy , Predictive Value of Tests , Progression-Free Survival , Reproducibility of Results , Time Factors
7.
J Exp Med ; 198(8): 1253-63, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14568983

ABSTRACT

Monocytes can develop into dendritic cells (DCs) that migrate to lymph nodes (LNs) and present antigens to T cells. However, we find that this differentiation is blocked when monocytes accumulate subcutaneously in response to bacteria or lipopolysaccharide (LPS). The inhibition of DC differentiation is mediated by the bacteria and in conjunction with inflammatory cells recruited at the site of injection. Inhibition of migratory DC development was reversed in Toll-like receptor (TLR)4-mutated mice when LPS, but not whole bacteria, was injected, suggesting that TLR4 is one but not the only mediator of the inhibition. The block imposed by bacteria was partly relieved by the absence of interleukin (IL)-12 p40, but not by individual absence of several cytokines involved in DC differentiation or in inflammation, i.e., IL-6, IL-10, IL-12 p35, and interferon gamma. Consistent with the inability of monocytes to yield migrating DCs, and the finding that other DCs had limited access to particulate or bacterial antigens, these antigens were weakly presented to T cells in the draining LN. These results illustrate that bacteria-associated signals can have a negative regulatory role on adaptive immunity and that local innate responses for containment of infectious bacteria can at least initially supersede development of adaptive responses.


Subject(s)
Dendritic Cells/immunology , Lipopolysaccharides/pharmacology , Monocytes/immunology , Salmonella typhimurium/immunology , Animals , Cell Differentiation , Cell Movement , Female , Immunity, Innate , Inflammation/immunology , Membrane Glycoproteins/immunology , Mice , Receptors, Cell Surface/immunology , Toll-Like Receptor 4 , Toll-Like Receptors
8.
Article in English | MEDLINE | ID: mdl-32139439

ABSTRACT

OBJECTIVE: To establish cytometry profiles associated with disease stages and immunotherapy in MS. METHODS: Demographic/clinical data and peripheral blood samples were collected from 227 patients with MS and 82 sex- and age-matched healthy controls (HCs) enrolled in a cross-sectional study at 4 European MS centers (Spain, Italy, Germany, and Norway). Flow cytometry of isolated peripheral blood mononuclear cells was performed in each center using specifically prepared antibody-cocktail Lyotubes; data analysis was centralized at the Genoa center. Differences in immune cell subsets were assessed between groups of untreated patients with relapsing-remitting or progressive MS (RRMS or PMS) and HCs and between groups of patients with RRMS taking 6 commonly used disease-modifying drugs. RESULTS: In untreated patients with MS, significantly higher frequencies of Th17 cells in the RRMS population compared with HC and lower frequencies of B-memory/B-regulatory cells as well as higher percentages of B-mature cells in patients with PMS compared with HCs emerged. Overall, the greatest deviation in immunophenotype in MS was observed by treatment rather than disease course, with the strongest impact found in fingolimod-treated patients. Fingolimod induced a decrease in total CD4+ T cells and in B-mature and B-memory cells and increases in CD4+ and CD8+ T-regulatory and B-regulatory cells. CONCLUSIONS: Our highly standardized, multisite cytomics data provide further understanding of treatment impact on MS immunophenotype and could pave the way toward monitoring immune cells to help clinical management of MS individuals.


Subject(s)
Disease Progression , Fingolimod Hydrochloride/pharmacology , Immunologic Factors/pharmacology , Immunophenotyping , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Adult , Aged , Cross-Sectional Studies , Female , Flow Cytometry , Germany , Humans , Immunotherapy , Italy , Male , Middle Aged , Multiple Sclerosis, Chronic Progressive/classification , Multiple Sclerosis, Chronic Progressive/drug therapy , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Relapsing-Remitting/classification , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Norway , Spain , Young Adult
9.
Curr Protoc Stem Cell Biol ; 48(1): e76, 2019 02.
Article in English | MEDLINE | ID: mdl-30624011

ABSTRACT

This unit describes protocols for isolating subpopulations of extracellular vesicles (EVs) purified from human adipose tissue-derived mesenchymal stromal cells by density gradient centrifugation and for characterizing them by flow cytometry (FCM). Determining the optimal strategy for isolating EVs is a critical step toward retrieving the maximal amount while ensuring the recovery of different vesicular subtypes. The first protocol details density gradient centrifugation to isolate both exosomes and microvesicles. In the second protocol, characterization of EV subpopulations by FCM is depicted, taking advantage of non-conventional modalities, in accordance with the latest technical indications. The procedures described here can be easily reproduced and can be employed regardless of the cell type used to obtain EVs. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Adipose Tissue/ultrastructure , Centrifugation, Density Gradient/methods , Exosomes , Flow Cytometry/methods , Mesenchymal Stem Cells/ultrastructure , Humans
10.
Sci Rep ; 9(1): 87, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643152

ABSTRACT

Physio-pathologic interrelationships between endothelial layer and graft-versus-host disease (GVHD) have been described leading to assess the entity "endothelial GVHD" as the early step for clinical manifestations of acute GVHD. The availability of the CellSearch system has allowed us to monitor Circulating Endothelial Cells (CEC) changes in allogeneic hematopoietic stem cell transplantation (allo-HSCT) as useful tool to help clinicians in GVHD diagnostic definition. We have compared CEC counts generated by an ad hoc designed polychromatic-flowcytometry (PFC) Lyotube with those of the CellSearch system. CEC were counted in parallel at 5 timepoints in 50 patients with malignant hematologic disorders undergoing allo-HSCT (ClinicalTrials.gov, NCT02064972). Spearman rank correlation showed significant association between CEC values at all time points (p = 0.0001). The limits of agreement was demonstrated by Bland Altman plot analysis, showing bias not significant at T1, T3, T4, while at T2 and T5 resulted not estimable. Moreover, Passing Bablok regression analysis showed not significant differences between BD Lyotube and CellSearch system. We show that CEC counts, generated with either the CellSearch system or the PFC-based panel, have a superimposable kinetic in allo-HSCT patients and that both counting procedures hold the potential to enter clinical routine as a suitable tool to assist clinicians in GVHD diagnosis.


Subject(s)
Blood Cells , Endothelial Cells/pathology , Flow Cytometry/methods , Graft vs Host Disease/diagnosis , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous/adverse effects , Humans
11.
Stem Cell Res Ther ; 9(1): 10, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29338788

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSC) are a heterogeneous population of multipotent progenitors used in the clinic because of their immunomodulatory properties and their ability to differentiate into multiple mesodermal lineages. Although bone marrow (BM) remains the most common MSC source, cord blood (CB) can be collected noninvasively and without major ethical concerns. Comparative studies comprehensively characterizing the MSC phenotype across several tissue sources are still lacking. This study provides a 246-antigen immunophenotypic analysis of BM- and CB-derived MSC aimed at identifying common and strongly expressed MSC markers as well as the existence of discriminating markers between the two sources. METHODS: BM-MSC (n = 4) were expanded and analyzed as bulk (n = 6) or single clones isolated from the bulk culture (n = 3). CB-MSC (n = 6) were isolated and expanded as single clones in 5/6 samples. The BM-MSC and CB-MSC phenotype was investigated by flow cytometry using a panel of 246 monoclonal antibodies. To define the markers common to both sources, those showing the smallest variation between samples (coefficient of variation of log2 fold increase ≤ 0.5, n = 59) were selected for unsupervised hierarchical cluster analysis (HCL). Differentially expressed markers were identified by directly comparing the expression of all 246 antigens between BM-MSC and CB-MSC. RESULTS: Based on HCL, 18 markers clustered as strongly expressed in BM-MSC and CB-MSC, including alpha-smooth muscle antigen (SMA), beta-2-microglobulin, CD105, CD13, CD140b, CD147, CD151, CD276, CD29, CD44, CD47, CD59, CD73, CD81, CD90, CD98, HLA-ABC, and vimentin. All except CD140b and alpha-SMA were suitable for the specific identification of ex-vivo expanded MSC. Notably, only angiotensin-converting enzyme (CD143) was exclusively expressed on BM-MSC. CD143 expression was tested on 10 additional BM-MSC and CB-MSC and on 10 umbilical cord- and adipose tissue-derived MSC samples, confirming that its expression is restricted to adult sources. CONCLUSIONS: This is the first study that has comprehensively compared the phenotype of BM-MSC and CB-MSC. We have identified markers that could complement the minimal panel proposed for the in-vitro MSC definition, being shared and strongly expressed by BM- and CB-derived MSC. We have also identified CD143 as a marker exclusively expressed on MSC derived from adult tissue sources. Further studies will elucidate the biological role of CD143 and its potential association with tissue-specific MSC features.


Subject(s)
Antigens, CD/blood , Biomarkers/blood , Bone Marrow Cells/cytology , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Peptidyl-Dipeptidase A/metabolism , Adult , Cell Proliferation , Cells, Cultured , Female , Flow Cytometry , Humans , Male , Middle Aged , Phenotype , Umbilical Cord/cytology , Young Adult
12.
Front Oncol ; 8: 105, 2018.
Article in English | MEDLINE | ID: mdl-29732315

ABSTRACT

To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1-mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.

13.
Sci Rep ; 8(1): 5823, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29643468

ABSTRACT

Circulating endothelial cells (CEC) represent a restricted peripheral blood (PB) cell subpopulation with high potential diagnostic value in many endothelium-involving diseases. However, whereas the interest in CEC studies has grown, the standardization level of their detection has not. Here, we undertook the task to align CEC phenotypes and counts, by standardizing a novel flow cytometry approach, within a network of six laboratories. CEC were identified as alive/nucleated/CD45negative/CD34bright/CD146positive events and enumerated in 269 healthy PB samples. Standardization was demonstrated by the achievement of low inter-laboratory Coefficients of Variation (CVL), calculated on the basis of Median Fluorescence Intensity values of the most stable antigens that allowed CEC identification and count (CVL of CD34bright on CEC ~ 30%; CVL of CD45 on Lymphocytes ~ 20%). By aggregating data acquired from all sites, CEC numbers in the healthy population were captured (medianfemale = 9.31 CEC/mL; medianmale = 11.55 CEC/mL). CEC count biological variability and method specificity were finally assessed. Results, obtained on a large population of donors, demonstrate that the established procedure might be adopted as standardized method for CEC analysis in clinical and in research settings, providing a CEC physiological baseline range, useful as starting point for their clinical monitoring in endothelial dysfunctions.


Subject(s)
Blood Cell Count/methods , Cell Separation/standards , Endothelial Cells , Endothelium, Vascular/cytology , Flow Cytometry/standards , Adult , Biological Variation, Population , Blood Cell Count/standards , Cell Separation/methods , Feasibility Studies , Female , Flow Cytometry/methods , Healthy Volunteers , Hematology/methods , Hematology/standards , Humans , Laboratories/standards , Male , Middle Aged , Reference Values , Sensitivity and Specificity , Young Adult
14.
J Exp Med ; 205(3): 657-67, 2008 Mar 17.
Article in English | MEDLINE | ID: mdl-18316416

ABSTRACT

The role of matricellular proteins in bacterial containment and in the induction of pathogen-specific adaptive immune responses is unknown. We studied the function of the matricellular protein secreted protein, acidic and rich in cysteine (SPARC/osteonectin) in the dissemination of locally injected Salmonella typhimurium and in the subsequent immune response. We show that SPARC was required for the development of organized acute inflammatory reactions with granuloma-like (GL) features and for the control of bacterial spreading to draining lymph nodes (DLNs). However, SPARC-related GL also inhibited dendritic cell (DC) migration to the DLNs and limited the development of adaptive immune response, thus conferring increased susceptibility to the pathogen. In SPARC-deficient mice, both DC migration and antigen-specific responses were restored against bacteria, leading to protective anti-S. typhimurium immunity. This highlights a new function of matricellular proteins in bacterial infection and suggests that initial containment of bacteria can have drawbacks.


Subject(s)
Granuloma/immunology , Granuloma/microbiology , Osteonectin/immunology , Salmonella typhimurium/immunology , Animals , Bacterial Vaccines/pharmacology , Cell Movement , Collagen Type IV/metabolism , Colony Count, Microbial , Dendritic Cells/immunology , Dendritic Cells/microbiology , Dendritic Cells/physiology , Granuloma/metabolism , Granuloma/pathology , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Osteonectin/deficiency , Osteonectin/genetics , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/pathogenicity , T-Lymphocytes/immunology
15.
J Cell Sci ; 118(Pt 16): 3685-94, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16046482

ABSTRACT

On their path to draining lymph nodes, epidermal Langerhans cells traverse collagen-dense connective tissue before reaching lymphatic vessels. The matricellular protein SPARC (secreted protein, acidic and rich in cysteine), which is induced during inflammation and tissue repair, organizes collagen deposition in tissue stroma. We analyzed Langerhans cell and dendritic-cell migration and its impact on T-cell priming in SPARC-null (SPARC(-/-)) and SPARC-sufficient (SPARC(+/+)) mice. Although the same number of Langerhans cells populate the ear skin of SPARC(-/-) and SPARC(+/+) mice, more Langerhans cells were found in the lymph nodes draining antigen-sensitized ears of SPARC(-/-) mice and significantly more Langerhans cells migrated from null-mice-derived ear skin explants. Such favored Langerhans cell migration is due to the host environment, as demonstrated by SPARC(+/+)>SPARC(-/-) and reciprocal chimeras, and have a profound influence on T-cell priming. Contact-, delayed type-hypersensitivity and naive T-cell receptor-transgenic T-cell priming, together indicate that the lack of SPARC in the environment accelerates the onset of T-cell priming by hastening Langerhans cell/dendritic-cell migration.


Subject(s)
Cell Movement/genetics , Dendritic Cells/metabolism , Langerhans Cells/metabolism , Osteonectin/genetics , T-Lymphocytes/metabolism , Animals , Antigen Presentation/genetics , Antigen Presentation/immunology , Cell Communication/genetics , Cell Movement/immunology , Dendritic Cells/immunology , Dermatitis, Contact/genetics , Dermatitis, Contact/immunology , Immunity, Cellular/genetics , Immunity, Cellular/immunology , Langerhans Cells/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Knockout , Skin/cytology , Skin/immunology , T-Lymphocytes/immunology , Up-Regulation/genetics , Up-Regulation/immunology
16.
Eur J Immunol ; 32(10): 2800-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12355432

ABSTRACT

Toll-like receptor 4 (TLR4) has been recently associated with cellular responses to lipopolysaccharide (LPS), and mice mutated in tlr4, such as C57BL/10ScCr or C3H/HeJ mice, become hyporesponsive to LPS. In this study, we have analyzed the capacity of bone marrow-derived dendritic cells (BMDC) from C57BL/10ScCr (ScCr-BMDC) or C3H/HeJ (HeJ-BMDC) mice to respond to LPS or to Gram-negative bacteria. We show that ScCr- or HeJ-BMDC are insensitive to LPS, but can mature in response to live and killed Gram-negative bacteria. Interestingly, only ScCr-BMDC but not HeJ-BMDC, stimulated with bacteria, have reduced capacity to produce pro- and anti-inflammatory cytokines as compared to BMDC from control mice, probably due to genetic defects unrelated to the tlr4 mutation. Nevertheless, ScCr-BMDC and ScCr BM-macrophages (BM-Mphi) phagocytose Salmonella typhimurium similarly to control cells, indicating that TLR4 is not compulsory for bacterial uptake. Moreover, BM-Mphi, but not BM-DC from B10ScCr or C3H/HeJ mice, are impaired in their capacity to kill intracellular bacteria and to produce NO as compared to wild type controls. However, the bacteria killing property of BM-Mphi is completely restored by pretreating the cells with IFN-gamma. Hence, TLR4 plays different roles in DC versus Mphi.


Subject(s)
Dendritic Cells/physiology , Drosophila Proteins , Gram-Negative Bacteria/metabolism , Membrane Glycoproteins/physiology , Receptors, Cell Surface/physiology , Animals , Bone Marrow Cells/immunology , Cytokines/biosynthesis , Dendritic Cells/immunology , Lipopolysaccharides/pharmacology , Macrophages/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Toll-Like Receptor 4 , Toll-Like Receptors
SELECTION OF CITATIONS
SEARCH DETAIL