Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Physiol Plant ; 176(3): e14315, 2024.
Article in English | MEDLINE | ID: mdl-38693794

ABSTRACT

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Subject(s)
Brassica napus , Nitrogen , Phenotype , Plant Roots , Quantitative Trait Loci , Plant Roots/genetics , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Nitrogen/metabolism , Quantitative Trait Loci/genetics , Brassica napus/genetics , Brassica napus/growth & development , Brassica napus/anatomy & histology , Brassica napus/metabolism , Genotype , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Biomass , Nitrates/metabolism , Chromosome Mapping , Genetic Variation
2.
Plant Mol Biol ; 113(4-5): 323-327, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37925670

ABSTRACT

Duplication of genes at different time period, through recurrent and frequent polyploidization events, have played a major role in plant evolution, adaptation and diversification. Interestingly, some of the ancestral duplicated genes (referred as paleologs), have been maintained for millions of years, and there is still a poor knowledge of the reasons of their retention, especially when testing the phenotypic effect of individual copies by using functional genetic approaches. To fill this gap, we performed functional genetic (CRISPR-Cas9), physiological, transcriptomic and evolutionary studies to finely investigate this open question, taking the example of the petC gene (involved in cytochrome b6/f and thus impacting photosynthesis) that is present in four paleologous copies in the oilseed crop Brassica napus. RNA-Seq and selective pressure analyses suggested that all paleologous copies conserved the same function and that they were all highly transcribed. Thereafter, the Knock Out (K.O.) of one, several or all petC copies highlighted that all paleologous copies have to be K.O. to suppress the gene function. In addition, we could determine that phenotypic effects in single and double mutants could only be deciphered in high light conditions. Interestingly, we did not detect any significant differences between single mutants K.O. for either the A03 or A09 copy (despite being differentially transcribed), or even between mutants for a single or two petC copies. Altogether, this work revealed that petC paleologs have retained their ancestral function and that the retention of these copies is explained by their compensatory role, especially in optimal environmental conditions.


Subject(s)
Brassica napus , Brassica napus/genetics , Genome, Plant/genetics , Genes, Plant/genetics , Genes, Duplicate/genetics , Polyploidy
3.
Theor Appl Genet ; 136(7): 161, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37354229

ABSTRACT

KEY MESSAGE: We report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets. Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.


Subject(s)
Brassica napus , Chromosome Mapping/methods , Brassica napus/genetics , Brassica napus/metabolism , Consensus , Plant Breeding , Seeds/genetics , Seeds/metabolism
4.
New Phytol ; 234(2): 545-559, 2022 04.
Article in English | MEDLINE | ID: mdl-35092024

ABSTRACT

Meiotic recombination is a major evolutionary process generating genetic diversity at each generation in sexual organisms. However, this process is highly regulated, with the majority of crossovers lying in the distal chromosomal regions that harbor low DNA methylation levels. Even in these regions, some islands without recombination remain, for which we investigated the underlying causes. Genetic maps were established in two Brassica napus hybrids to detect the presence of such large nonrecombinant islands. The role played by DNA methylation and structural variations in this local absence of recombination was determined by performing bisulfite sequencing and whole genome comparisons. Inferred structural variations were validated using either optical mapping or oligo fluorescence in situ hybridization. Hypermethylated or inverted regions between Brassica genomes were associated with the absence of recombination. Pairwise comparisons of nine B. napus genome assemblies revealed that such inversions occur frequently and may contain key agronomic genes such as resistance to biotic stresses. We conclude that such islands without recombination can have different origins, such as DNA methylation or structural variations in B. napus. It is thus essential to take into account these features in breeding programs as they may hamper the efficient combination of favorable alleles in elite varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Chromosomes, Plant , Epigenomics , Genome, Plant , In Situ Hybridization, Fluorescence , Plant Breeding
5.
Transgenic Res ; 31(1): 87-105, 2022 02.
Article in English | MEDLINE | ID: mdl-34632562

ABSTRACT

Meganucleases are rare cutting enzymes that can generate DNA modifications and are part of the plant genome editing toolkit although they lack versatility. Here, we evaluated the use of two meganucleases, I-SceI and a customized meganuclease, in tomato and oilseed rape. Different strategies were explored for the use of these meganucleases. The activity of a customized and a I-SceI meganucleases was first estimated by the use of a reporter construct GFFP with the target sequences and enabled to demonstrate that both meganucleases can generate double-strand break and HDR mediated recombination in a reporter gene. Interestingly, I-SceI seems to have a higher DSB efficiency than the customized meganuclease: up to 62.5% in tomato and 44.8% in oilseed rape. Secondly, the same exogenous landing pad was introduced in both species. Despite being less efficient compared to I-SceI, the customized meganuclease was able to generate the excision of an exogenous transgene (large deletion of up to 3316 bp) present in tomato. In this paper, we also present some pitfalls to be considered before using meganucleases (e.g., potential toxicity) for plant genome editing.


Subject(s)
Gene Editing , Solanum lycopersicum , Deoxyribonucleases, Type II Site-Specific/genetics , Genes, Reporter , Solanum lycopersicum/genetics , Transgenes
6.
New Phytol ; 230(5): 2072-2084, 2021 06.
Article in English | MEDLINE | ID: mdl-33638877

ABSTRACT

Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.


Subject(s)
Brassica napus , Brassica , Aneuploidy , Brassica/genetics , Brassica napus/genetics , Genome, Plant/genetics , Polyploidy
7.
Plant J ; 98(3): 434-447, 2019 05.
Article in English | MEDLINE | ID: mdl-30604905

ABSTRACT

Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.


Subject(s)
Brassica/genetics , Chloroplasts/genetics , Gene Duplication/genetics , Genome, Plastid/genetics , Brassica napus/genetics , Evolution, Molecular , Polyploidy
8.
PLoS Genet ; 13(5): e1006794, 2017 May.
Article in English | MEDLINE | ID: mdl-28493942

ABSTRACT

Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.


Subject(s)
Brassica/genetics , Crossing Over, Genetic , Genetic Variation , Meiosis/genetics , Brassica/growth & development , Genome, Plant , Polymorphism, Single Nucleotide , Polyploidy , Recombination, Genetic
9.
Plant Biotechnol J ; 15(11): 1478-1489, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28370938

ABSTRACT

Genomic rearrangements arising during polyploidization are an important source of genetic and phenotypic variation in the recent allopolyploid crop Brassica napus. Exchanges among homoeologous chromosomes, due to interhomoeologue pairing, and deletions without compensating homoeologous duplications are observed in both natural B. napus and synthetic B. napus. Rearrangements of large or small chromosome segments induce gene copy number variation (CNV) and can potentially cause phenotypic changes. Unfortunately, complex genome restructuring is difficult to deal with in linkage mapping studies. Here, we demonstrate how high-density genetic mapping with codominant, physically anchored SNP markers can detect segmental homoeologous exchanges (HE) as well as deletions and accurately link these to QTL. We validated rearrangements detected in genetic mapping data by whole-genome resequencing of parental lines along with cytogenetic analysis using fluorescence in situ hybridization with bacterial artificial chromosome probes (BAC-FISH) coupled with PCR using primers specific to the rearranged region. Using a well-known QTL region influencing seed quality traits as an example, we confirmed that HE underlies the trait variation in a DH population involving a synthetic B. napus trait donor, and succeeded in narrowing the QTL to a small defined interval that enables delineation of key candidate genes.


Subject(s)
Brassica napus/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Phenotype , Quantitative Trait Loci/genetics , Chromosome Pairing , Chromosomes, Artificial, Bacterial/genetics , DNA Copy Number Variations , DNA, Plant/genetics , Diploidy , Gene Rearrangement , Genetic Linkage/genetics , Genome, Plant , Genotype , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization , Polymorphism, Single Nucleotide , Recombination, Genetic , Seeds/chemistry , Whole Genome Sequencing
10.
New Phytol ; 213(4): 1886-1897, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27575298

ABSTRACT

Constitutive genomes of allopolyploid species evolve throughout their life span. However, the consequences of long-term alterations on the interdependency between each original genome have not been established. Here, we attempted an approach corresponding to subgenome extraction from a previously sequenced natural allotetraploid, offering a unique opportunity to evaluate plant viability and structural evolution of one of its diploid components. We employed two different strategies to extract the diploid AA component of the Brassica napus variety 'Darmor' (AACC, 2n = 4x = 38) and we assessed the genomic structure of the latest AA plants obtained (after four to five rounds of selection), using a 60K single nucleotide polymorphism Illumina array. Only one strategy was successful and the diploid AA plants that were structurally characterized presented a lower proportion of the B. napus A subgenome extracted than expected. In addition, our analyses revealed that some genes lost in a polyploid context appeared to be compensated for plant survival, either by conservation of genomic regions from B. rapa, used in the initial cross, or by some introgressions from the B. napus C subgenome. We conclude that as little as c. 7500 yr of coevolution could lead to subgenome interdependency in the allotetraploid B. napus as a result of structural modifications.


Subject(s)
Brassica napus/genetics , Genome, Plant , Biological Evolution , Chromosomes, Plant/genetics , Diploidy , Hybridization, Genetic , Pollen/cytology , Polyploidy
11.
Mol Phylogenet Evol ; 114: 401-414, 2017 09.
Article in English | MEDLINE | ID: mdl-28694102

ABSTRACT

DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.


Subject(s)
Evolution, Molecular , Poaceae/metabolism , Sulfonium Compounds/metabolism , Aldehyde Dehydrogenase/classification , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Carboxy-Lyases/classification , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Methyltransferases/classification , Methyltransferases/genetics , Methyltransferases/metabolism , Oxidoreductases Acting on CH-NH Group Donors/classification , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Phylogeny , Poaceae/classification , Poaceae/genetics , Polyploidy , Sulfonium Compounds/analysis
12.
BMC Genet ; 17(1): 131, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27628849

ABSTRACT

BACKGROUND: Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. RESULTS: Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. CONCLUSIONS: Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition levels on seed yield-related traits under our experimental conditions. Nevertheless, critical genomic regions associated with yield that were stable across environments were identified in rapeseed.


Subject(s)
Brassica rapa/genetics , Brassica rapa/metabolism , Energy Metabolism/genetics , Gene-Environment Interaction , Nitrogen/metabolism , Seasons , Algorithms , Biological Evolution , Chromosome Mapping , Cluster Analysis , Genetic Association Studies , Genetic Linkage , Genome, Plant , Genome-Wide Association Study , Genomics/methods , Genotype , Models, Statistical , Quantitative Trait Loci , Quantitative Trait, Heritable
13.
Plant Physiol ; 161(4): 1918-29, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23435694

ABSTRACT

Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution.


Subject(s)
Acetyl-CoA Carboxylase/genetics , Cell Nucleus/genetics , Gene Transfer, Horizontal/genetics , Magnoliopsida/enzymology , Magnoliopsida/genetics , Plastids/genetics , Protein Subunits/genetics , Acetyl-CoA Carboxylase/chemistry , Acetyl-CoA Carboxylase/metabolism , Amino Acid Sequence , Campanulaceae/enzymology , Campanulaceae/genetics , Genes, Plant/genetics , Introns/genetics , Molecular Sequence Data , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Sequence Alignment
14.
Ann Bot ; 113(7): 1197-210, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24769537

ABSTRACT

BACKGROUND AND AIMS: To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the 'inverted repeat-lacking clade', IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. METHODS: The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. KEY RESULTS: The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip-flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. CONCLUSIONS: This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome.


Subject(s)
Evolution, Molecular , Genome, Chloroplast , Lupinus/genetics , Lupinus/classification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
15.
Mol Biol Evol ; 29(7): 1707-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22319165

ABSTRACT

DNA of plastid (chloroplast) origin comprises between 1% and 10% of the mitochondrial genomes of higher plants, but functions are currently considered to be limited to rare instances where plastid tRNA genes have replaced their mitochondrial counterparts, where short patches of mitochondrial genes evolved using their homologous plastidic copies by gene conversion or where a new promoter region is created. Here, we show that, in some angiosperms, plastid-derived DNA in mitochondrial genomes (also called mtpt for mitochondrial plastid DNA) contributes codons to unrelated mitochondrial protein-coding sequences and may also have a role in posttranscriptional RNA processing. We determined that these transfers of plastid DNA occurred a few to 150 Ma and that mtpts can sometimes remain dormant many millions of years before contributing to the mitochondrial proteome.


Subject(s)
Genes, Mitochondrial , Genes, Plant , Magnoliopsida/cytology , Magnoliopsida/genetics , Plastids/genetics , Base Sequence , Evolution, Molecular , Gene Conversion , Molecular Sequence Data
16.
J Exp Bot ; 64(7): 1837-48, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23554259

ABSTRACT

Strawberry (Fragaria sp.) stands as an interesting model for studying flowering behaviour and its relationship with asexual plant reproduction in polycarpic perennial plants. Strawberry produces both inflorescences and stolons (also called runners), which are lateral stems growing at the soil surface and producing new clone plants. In this study, the flowering and runnering behaviour of two cultivated octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) genotypes, a seasonal flowering genotype CF1116 and a perpetual flowering genotype Capitola, were studied along the growing season. The genetic bases of the perpetual flowering and runnering traits were investigated further using a pseudo full-sibling F1 population issued from a cross between these two genotypes. The results showed that a single major quantitative trait locus (QTL) named FaPFRU controlled both traits in the cultivated octoploid strawberry. This locus was not orthologous to the loci affecting perpetual flowering (SFL) and runnering (R) in Fragaria vesca, therefore suggesting different genetic control of perpetual flowering and runnering in the diploid and octoploid Fragaria spp. Furthermore, the FaPFRU QTL displayed opposite effects on flowering (positive effect) and on runnering (negative effect), indicating that both traits share common physiological control. These results suggest that this locus plays a major role in strawberry plant fitness by controlling the balance between sexual and asexual plant reproduction.


Subject(s)
Fragaria/metabolism , Fragaria/physiology , Plant Proteins/metabolism , Reproduction/physiology , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Reproduction/genetics
17.
Biochem J ; 441(1): 161-71, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21864294

ABSTRACT

PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (ß-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/physiology , PTEN Phosphohydrolase/metabolism , Phosphatidic Acids/metabolism , Phosphoric Monoester Hydrolases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Escherichia coli/metabolism , Models, Molecular , PTEN Phosphohydrolase/genetics , Phosphoric Monoester Hydrolases/genetics , Phylogeny , Protein Binding , Protein Conformation , Signal Transduction , Substrate Specificity
18.
Plant Physiol ; 157(4): 2181-93, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034627

ABSTRACT

The nuclear genome of eukaryotes contains large amounts of cytoplasmic organelle DNA (nuclear integrants of organelle DNA [norgs]). The recent sequencing of many mitochondrial and chloroplast genomes has enabled investigation of the potential role of norgs in endosymbiotic evolution. In this article, we describe a new polymerase chain reaction-based method that allows the identification and evolutionary study of recent and older norgs in a range of eukaryotes. We tested this method in the genus Nicotiana and obtained sequences from seven nuclear integrants of plastid DNA (nupts) totaling 25 kb in length. These nupts were estimated to have been transferred 0.033 to 5.81 million years ago. The spectrum of mutations present in the potential protein-coding sequences compared with the noncoding sequences of each nupt revealed that nupts evolve in a nuclear-specific manner and are under neutral evolution. Indels were more frequent in noncoding regions than in potential coding sequences of former chloroplastic DNA, most probably due to the presence of a higher number of homopolymeric sequences. Unexpectedly, some potential protein-coding sequences within the nupts still contained intact open reading frames for up to 5.81 million years. These results suggest that chloroplast genes transferred to the nucleus have in some cases several millions of years to acquire nuclear regulatory elements and become functional. The different factors influencing this time frame and the potential role of nupts in endosymbiotic gene transfer are discussed.


Subject(s)
DNA, Chloroplast/genetics , Evolution, Molecular , Nicotiana/genetics , Polymerase Chain Reaction/methods , Symbiosis , Base Sequence , Cell Nucleus/genetics , Chloroplasts/genetics , DNA Primers/genetics , DNA, Plant/genetics , Genes, Plant/genetics , Genome, Chloroplast/genetics , Genome, Plant/genetics , Molecular Sequence Data , Mutation , Phylogeny , Plastids/genetics , Sequence Alignment , Sequence Analysis, DNA , Time Factors
19.
Front Genet ; 12: 589160, 2021.
Article in English | MEDLINE | ID: mdl-33841492

ABSTRACT

Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6-10 my, at the origin of differential phenotypic and ecological traits. Of particular interest are the recent (19th century) hybridizations between the two hexaploids Spartina alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and the enrichment of previously published reference transcriptomes for hexaploids and the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing 21 transcribed transposable element (TE) lineages across the seven investigated Spartina species. In 4x and 6x mesopolyploids, gene and TE expression changes were consistent with phylogenetic relationships and divergence, revealing weak expression differences in the tetraploid sister species Spartina bakeri and Spartina versicolor (<2 my divergence time) compared to marked transcriptome divergence between the hexaploids S. alterniflora and S. maritima that diverged 2-4 mya. Differentially expressed genes were involved in glycolysis, post-transcriptional protein modifications, epidermis development, biosynthesis of carotenoids. Most detected TE lineages (except SINE elements) were found more expressed in hexaploids than in tetraploids, in line with their abundance in the corresponding genomes. Comparatively, an astonishing (52%) expression repatterning and deviation from parental additivity were observed following recent reticulate evolution (involving the F1 hybrids and the neo-allododecaploid S. anglica), with various patterns of biased homoeologous gene expression, including genes involved in epigenetic regulation. Downregulation of TEs was observed in both hybrids and accentuated in the neo-allopolyploid. Our results reinforce the view that allopolyploidy represents springboards to new regulatory patterns, offering to worldwide invasive species, such as S. anglica, the opportunity to colonize stressful and fluctuating environments on saltmarshes.

20.
Biology (Basel) ; 10(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34439964

ABSTRACT

With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scale is now feasible at the laboratory scale. Current technologies, in particular long-range technologies, are numerous, and selecting the most promising one for the genome of interest is crucial to obtain optimal results. In this study, we resequenced the genome of the yellow sarson, Brassica rapa cv. Z1, using the Oxford Nanopore PromethION sequencer and assembled the sequenced data using current assemblers. To reconstruct complete chromosomes, we used and compared three long-range scaffolding techniques, optical mapping, Omni-C, and Pore-C sequencing libraries, commercialized by Bionano Genomics, Dovetail Genomics, and Oxford Nanopore Technologies, respectively, or a combination of the three, in order to evaluate the capability of each technology.

SELECTION OF CITATIONS
SEARCH DETAIL