ABSTRACT
BACKGROUND: Postoperative stereotactic radiosurgery (SRS) is a standard management option for patients with resected brain metastases. Preoperative SRS may have certain advantages compared to postoperative SRS, including less uncertainty in delineation of the intact tumor compared to the postoperative resection cavity, reduced rate of leptomeningeal dissemination postoperatively, and a lower risk of radiation necrosis. The recently published ASCO-SNO-ASTRO consensus statement provides no recommendation for the preferred sequencing of radiotherapy and surgery for patients receiving both treatments for their brain metastases. METHODS: This multicenter, randomized controlled trial aims to recruit 88 patients with resectable brain metastases over an estimated three-year period. Patients with ten or fewer brain metastases with at least one resectable, fulfilling inclusion criteria will be randomized to postoperative SRS (standard arm) or preoperative SRS (investigational arm) in a 1:1 ratio. Randomization will be stratified by age (< 60 versus ≥60 years), histology (melanoma/renal cell carcinoma/sarcoma versus other), and number of metastases (one versus 2-10). In the standard arm, postoperative SRS will be delivered within 3 weeks of surgery, and all unresected metastases will receive primary SRS. In the investigational arm, enrolled patients will receive SRS of all brain metastases followed by surgery of resectable metastases within one week of SRS. In either arm, single fraction or hypofractionated SRS in three or five fractions is permitted. The primary endpoint is to assess local control at 12 months in both arms. Secondary endpoints include local control at other time points, regional/distant brain recurrence rates, leptomeningeal recurrence rates, overall survival, neurocognitive outcomes, and adverse radiation events including radiation necrosis rates in both arms. DISCUSSION: This trial addresses the unanswered question of the optimal sequencing of surgery and SRS in the management of patients with resectable brain metastases. No randomized data comparing preoperative and postoperative SRS for patients with brain metastases has been published to date. TRIAL REGISTRATION: Clinicaltrials.gov , NCT04474925; registered on July 17, 2020. Protocol version 1.0 (January 31, 2020). SPONSOR: Alberta Health Services, Edmonton, Canada (Samir Patel, MD).
Subject(s)
Brain Neoplasms , Radiosurgery , Humans , Middle Aged , Radiosurgery/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain/pathology , Necrosis/etiology , Alberta , Treatment OutcomeABSTRACT
PURPOSE: Body image (BI) is an important issue for cancer patients, as patients with BI concerns are susceptible to depression, anxiety, difficulty coping, and poor quality of life (QoL). While this concern has been documented in patients with other malignancies, no data exists of this QoL issue in patients with primary brain tumors (PBT). METHODS: A cross-sectional survey of 100 PBT patients was conducted on an IRB approved prospective protocol using structured questionnaires. Participants completed the body image scale (BIS), Appearance Scheme Inventory Revised (ASI-R), MD Anderson Symptom Inventory Brain Tumor (MDASI-BT), and Patient-Reported Outcomes Measurement Information System (PROMIS) Depression, Anxiety, and Psychosocial Impact Positive measures. RESULTS: The prevalence of clinically significant body image dissatisfaction (BIS ≥ 10) was 28% (95% CI 19-37%), median BIS score was 5 (range 0-27). The median ASI-R composite score was 2.9 (range 1.5-4.7). BIS was significantly correlated with the ASI-R (r = 0.53, 95% CI 0.37 to 0.65). The mean PROMIS Depression score was 48.4 (SD = 8.9), PROMIS Anxiety score was 49.4 (SD = 9.9), and PROMIS Psychosocial Illness Impact Positive score was 48.9 (SD = 9.7). BIS was significantly correlated with age, and trended with BMI and sex. The PROMIS Psychosocial Illness Impact Positive and PROMIS Anxiety scores were the most strongly related to BIS. CONCLUSIONS: This study, the first to explore altered body image in PBT patients, revealed clinically significant body image dissatisfaction in nearly 1/3 of patients, similar to other malignancies. These findings underscore the potential contribution of disease and treatment-related body image concerns on psychosocial wellbeing in patients with PBT.
Subject(s)
Anxiety/epidemiology , Body Image/psychology , Brain Neoplasms/psychology , Depression/epidemiology , Quality of Life , Adult , Aged , Anxiety/psychology , Brain Neoplasms/pathology , Cross-Sectional Studies , Depression/psychology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prevalence , Prognosis , Prospective Studies , United States/epidemiology , Young AdultABSTRACT
OBJECTIVE. The objective of our study was to evaluate the utility of ferumoxytol-enhanced MR lymphography (MRL) in detection of metastatic lymph nodes (LNs) in patients with prostate, bladder, and kidney cancer. SUBJECTS AND METHODS. This phase 2 single-institution study enrolled patients with confirmed prostate (arm 1), bladder (arm 2), and kidney (arm 3) cancer and evidence of suspected LN involvement. Participants underwent ferumoxytol-enhanced MRL 24 and 48 hours after IV injection of 7.5 mg Fe/kg of ferumoxytol. A retrospective quantitative analysis was performed to determine the optimal timing for ferumoxytol-enhanced MRL using percentage change in normalized signal intensity (SI) from baseline to 24 and 48 hours after injection, which were estimated using the linear mixed-effects model in which time (24 vs 48 hours), diseases status, and time and disease status interaction were the fixed-effects independent variables. Differences in normalized SI values between subgroups of lesions were estimated by forming fixed-effects contrasts and tested by the Wald test. RESULTS. Thirty-nine patients (n = 30, arm 1; n = 6, arm 2; n = 3, arm 3) (median age, 65 years) with 145 LNs (metastatic, n = 100; benign, n = 45) were included. LN-based sensitivity, specificity, positive predictive value, and negative predictive value of ferumoxytol-enhanced MRL was 98.0%, 64.4%, 86.0%, and 93.5%, respectively. Sensitivity and specificity of ferumoxytol-enhanced MRL did not vary by LN size. Metastatic LNs showed a significantly higher percentage decrease of normalized SI on MRL at 24 hours after ferumoxytol injection than at 48 hours after ferumoxytol injection (p = 0.023), whereas the normalized SI values for nonmetastatic LNs were similar at both imaging time points (p = 0.260). CONCLUSION. Ferumoxytol-enhanced MRL shows high sensitivity in the detection of metastatic LNs in genitourinary cancers independent of LN size. The SI difference between benign and malignant LNs on ferumoxytol-enhanced MRL appears similar 24 and 48 hours after ferumoxytol injection, suggesting that imaging can be performed safely within 1 or 2 days of injection. Although ferumoxytol-enhanced MRL can be useful in settings without an available targeted PET agent, issues of iron overload and repeatability of ferumoxytol-enhanced MRL remain concerns for this method.
Subject(s)
Ferrosoferric Oxide , Kidney Neoplasms/pathology , Lymphatic Metastasis/diagnostic imaging , Lymphography/methods , Magnetic Resonance Imaging , Prostatic Neoplasms/pathology , Urinary Bladder Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prospective Studies , Retrospective StudiesABSTRACT
INTRODUCTION: Pseudoprogression (PsP) is a diagnostic dilemma in glioblastoma (GBM) after chemoradiotherapy (CRT). Magnetic resonance imaging (MRI) features may fail to distinguish PsP from early true progression (eTP), however clinical findings may aid in their distinction. METHODS: Sixty-seven patients received CRT for GBM between 2003 and 2016, and had pre- and post-treatment imaging suitable for retrospective evaluation using RANO criteria. Patients with signs of progression within the first 12-weeks post-radiation (P-12) were selected. Lesions that improved or stabilized were defined as PsP, and lesions that progressed were defined as eTP. RESULTS: The median follow up for all patients was 17.6 months. Signs of progression developed in 35/67 (52.2%) patients within P-12. Of these, 20/35 (57.1%) were subsequently defined as eTP and 15/35 (42.9%) as PsP. MRI demonstrated increased contrast enhancement in 84.2% of eTP and 100% of PsP, and elevated CBV in 73.7% for eTP and 93.3% for PsP. A decrease in FLAIR was not seen in eTP patients, but was seen in 26.7% PsP patients. Patients with eTP were significantly more likely to require increased steroid doses or suffer clinical decline than PsP patients (OR 4.89, 95% CI 1.003-19.27; p = 0.046). KPS declined in 25% with eTP and none of the PsP patients. CONCLUSIONS: MRI imaging did not differentiate eTP from PsP, however, KPS decline or need for increased steroids was significantly more common in eTP versus PsP. Investigation and standardization of clinical assessments in response criteria may help address the diagnostic dilemma of pseudoprogression after frontline treatment for GBM.
Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Magnetic Resonance Imaging , Brain/diagnostic imaging , Chemoradiotherapy , Contrast Media , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Retrospective Studies , Steroids/therapeutic use , Treatment OutcomeABSTRACT
Radiation therapy continues to be a key component in the management of pediatric malignancies. Increasing the likelihood of cure while minimizing late treatment toxicity in these young patients remains the primary goal. Within the realm of central nervous system neoplasms, efforts to further improve the efficacy of radiation therapy continue, while balancing risks of damage to uninvolved tissue. Radiation therapy can result in second malignancies, as well as cerebrovascular, neurotoxic, neurocognitive, endocrine, psychosocial, and quality-of-life effects. In this article we describe these acute and late effects and their implications, and we highlight strategies that have emerged to reduce both the volume of tissue that is irradiated and the radiation dose delivered. The feasibility, efficacy, and risks of these newer approaches to radiation therapy continue to be evaluated and monitored; robust outcome data are needed.
Subject(s)
Central Nervous System Neoplasms/radiotherapy , Cranial Irradiation/adverse effects , Radiation Injuries/therapy , Survivors , Adult , Age Factors , Central Nervous System Neoplasms/diagnosis , Child , Humans , Quality of Life , Radiation Dosage , Radiation Injuries/diagnosis , Radiation Injuries/etiology , Radiation Injuries/psychology , Risk Factors , Survivors/psychology , Time Factors , Treatment OutcomeABSTRACT
Newer approaches in the field of radiation therapy have raised the bar in the treatment of central nervous system (CNS) malignancies, with recognized advances that have aimed to increase the therapeutic index by improving conformality of the radiation dose to the planned target volume. Beyond these advances, the continued evolution of more effective systems for delivery of radiation to the CNS may offer further benefit not only to adults but also to pediatric patients, a cohort of the population that may be more sensitive to the long-term effects of radiation. This article describes several novel irradiation techniques under investigation that hold promise in the pediatric population. These include newer approaches to intensity-modulated radiation therapy; stereotactic radiosurgery and radiation therapy; particle therapy, most notably proton therapy, which may be of particular benefit in enabling young patients to avoid radiation-related adverse effects; and radioimmunotherapy strategies that spare healthy tissue from radiotoxicity by delivering therapy directly to tumor tissue. Although emerging strategies for the delivery of radiation therapy hold promise for improved outcomes in pediatric patients, there must be rigorous long-term evaluation of consequences associated with the various techniques employed, to weigh risks, benefits, and impact on quality of life.
Subject(s)
Central Nervous System Neoplasms/radiotherapy , Cranial Irradiation/methods , Radiation Dosage , Radioimmunotherapy , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated , Survivors , Adult , Age Factors , Central Nervous System Neoplasms/diagnosis , Child , Cranial Irradiation/adverse effects , Humans , Quality of Life , Radiation Injuries/etiology , Radiation Injuries/prevention & control , Radiosurgery/adverse effects , Radiotherapy, Intensity-Modulated/adverse effects , Risk Factors , Time Factors , Treatment OutcomeABSTRACT
PURPOSE: This was a phase 1 trial with the primary objective of identifying the most compressed dose schedule (DS) tolerable using risk volume-adapted, hypofractionated, postoperative radiation therapy (PORT) for biochemically recurrent prostate cancer. Secondary endpoints included biochemical progression-free survival and quality of life (QOL). METHODS AND MATERIALS: Patients were treated with 1 of 3 isoeffective DSs (DS1: 20 fractions, DS2: 15 fractions, and DS3: 10 fractions) that escalated the dose to the imaging-defined local recurrence (73 Gy3 equivalent dose in 2Gy fractions) and de-escalated the dose to the remainder of the prostate bed (48 Gy3 equivalent dose in 2Gy fractions). Escalation followed a standard 3 + 3 design with a 6-patient expansion at the maximally tolerated hypofractionated DS. Dose-limiting toxicity was defined as Common Terminology Criteria for Adverse Events v.4.0 grade (G) 3 toxicity lasting >4 days within 21 days of PORT completion or G4 gastrointestinal (GI) or genitourinary toxicities thereafter. QOL was assessed longitudinally through 24 months with the Expanded Prostate Cancer Index Composite short form. RESULTS: Between January 2018 and December 2023, 15 patients were treated (3 with DS1, 3 with DS2, and 9 with DS3). The median follow-up was 48 months. No dose-limiting toxicities were observed on any DS, and thus, expansion occurred at DS3. The cumulative incidence of G3 GI and genitourinary toxicity was 7% and 9% at 24 months, respectively, with no G4 events observed. Transient, acute G2+ GI toxicity was the most common. QOL worsened transiently during study follow-up in urinary incontinence, GI, and sexual subdomains but was similar to baseline by 24 months. The biochemical progression-free survival was 91% at both 24 and 60 months. CONCLUSIONS: The maximally tolerated hypofractionated DS for hypofractionated, risk volume-adapted PORT was determined to be DS3 (36.4 Gy to the prostate bed and 47.1 Gy to the imaging-defined recurrence in 10 daily fractions). No >G3 events were observed. Transient declines in QOL did not persist through 24 months.
ABSTRACT
PURPOSE: This trial examined if patients with ≤5 sites of oligoprogression benefit from the addition of SABR to standard of care (SOC) systemic therapy. METHODS AND MATERIALS: We enrolled patients with 1 to 5 metastases progressing on systemic therapy, and after stratifying by type of systemic therapy (cytotoxic vs noncytotoxic), randomized 1:2 between continued SOC treatment versus SABR to all progressing lesions plus SOC. The trial was initially limited to non-small cell lung cancer but was expanded to include all nonhematologic malignancies to meet accrual goals. The primary endpoint was progression-free survival (PFS). Secondary endpoints included overall survival (OS), lesional control, quality of life, adverse events, and duration of systemic therapy postrandomization. RESULTS: Ninety patients with 127 oligoprogressive metastases were enrolled across 8 Canadian institutions, with 59 randomized to SABR and 31 to SOC. The median age was 67 years, and 39 (43%) were women. The most common primary sites were lung (44%), genitourinary (23%), and breast (13%). Protocol adherence in the SOC arm was suboptimal, with 11 patients (35%) either receiving high-dose/ablative therapies (conflicting with trial protocol) or withdrawing from the study. The median follow-up was 31 months. There was no difference in PFS between arms (median PFS 8.4 months in the SABR arm vs 4.3 months in the SOC arm, but curves cross and 2-year PFS was 9% vs 24%, respectively; P = .91). The median OS was 31.2 months versus 27.4 months, respectively (P = .22). Lesional control was superior with SABR (70% vs 38%, respectively; P = .0015). There were 2 (3.4%) grade 3 and no grade 4/5 adverse events attributable to SABR. CONCLUSIONS: SABR was well-tolerated with superior lesional control but did not improve PFS or OS. Accrual to this study was difficult, and the results may have been impacted by an unwillingness to forgo ablative treatments on the SOC arm. (NCT02756793).
ABSTRACT
OBJECTIVE: The atlantodental interval (ADI) is used in assessing atlantoaxial stability. This measurement may potentially be affected by several features encountered during patient examination. This study examined the influence of 3 features: age, sex, and posture, on the measurement of ADI in a normal population. METHODS: The ADI was measured sequentially on 269 lateral cervical radiographs of adults with no demonstrated bony injury. Images were stratified by age and sex with equal representation in each age group. A further 25 asymptomatic adults were assessed for posture using craniovertebral angle measured from digital lateral photographs. The ADI was then measured from a lateral radiograph. The data were examined for correlation between age, craniovertebral angle, and ADI using Spearman rank correlation. The ADI of age groups was compared by Kruskal-Wallis test. The relationship between ADI and sex was examined using Wilcoxon rank sum test. Interaction between age and sex was explored using an interaction term in regression analysis. RESULTS: The ADI decreased with age, median measurements reducing from 2.07 to 0.85 mm across age groups (P < .01). No significant relationship was demonstrated between ADI and sex. No significant interaction was demonstrated between age and sex. Measurements of craniovertebral angle did not correlate with ADI (ρ = 0.03, P = .90). CONCLUSION: The magnitude of ADI decreases with advancing age. Age should be considered a modifying factor when interpreting measurement of ADI, particularly in consideration of potential minor instabilities. Patient sex does not appear to influence ADI, either independently or in interaction with age. Craniocervical posture variation does not influence ADI in an asymptomatic adult population.
Subject(s)
Atlanto-Axial Joint/anatomy & histology , Atlanto-Axial Joint/diagnostic imaging , Posture/physiology , Adult , Age Factors , Aged , Aging/physiology , Atlanto-Axial Joint/physiology , Cohort Studies , Female , Humans , Male , Middle Aged , Radiography , Reference Values , Regression Analysis , Sex Factors , Statistics, Nonparametric , Young AdultABSTRACT
BACKGROUND: Patients with prostate cancer undergoing treatment with radical radiation therapy (RT) plus androgen deprivation therapy (ADT) experience a constellation of deleterious metabolic and anthropometric changes related to hypogonadism that are associated with increased morbidity and mortality. We assessed the effect of metformin versus placebo to blunt the adverse effects of ADT on body weight, waist circumference, and other metabolic parameters. METHODS AND MATERIALS: This phase 2, multicenter, randomized controlled trial (RCT) randomized normoglycemic men with locally advanced prostate cancer receiving radical RT and ADT (18-36 months) in a 1:1 ratio to receive metformin 500 mg by mouth 3 times a day (for 30-36 months) versus identical placebo. RESULTS: From December 2015 to October 2019, 83 men were randomized with median follow-up of 23 months. Baseline mean body mass Index (BMI) of the cohort was 30.2 (range 22.2-52.5). Change in mean weight relative to baseline was lower among men who received metformin compared with placebo at 5 months (-1.80 kg, P = .038), but was not significant with longer follow-up (1 year: +0.16 kg, P = .874). Although participants on ADT had increases in waist circumference in both study arms, metformin did not significantly reduce these changes (1 year: +2.79 cm (placebo) versus +1.46 cm (metformin), P = .336). Low-density lipoprotein (LDL) cholesterol was lower in the metformin arm (-0.32 mmol/L) compared with the placebo arm (-0.03 mmol/L) at 5 months (P = .022), but these differences were not significant with longer follow-up (1 year: -0.17 mmol/L vs -0.19 mmol/L, P = .896). There were no differences in HbA1C, triglyceride, high-density lipoprotein (HDL) cholesterol, and total cholesterol by study arm. CONCLUSIONS: Men receiving radical RT and ADT gained weight and had increases in waist circumference over time that metformin did not significantly mitigate. Although this study did not observe any preventive effect of metformin on the anthropometric and metabolic complications of ADT, metformin continues to be studied in phase 3 RCTs in this patient population to assess its potential antineoplastic effects.
Subject(s)
Metformin , Prostatic Neoplasms , Male , Humans , Metformin/therapeutic use , Androgens , Androgen Antagonists/adverse effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Cholesterol/therapeutic useABSTRACT
Purpose: Optimal management of patients with prostate cancer (PCa) to achieve bowel and bladder reproducibility for radiation therapy (RT) and the appropriate planning target volume (PTV) expansions for use with modern image guidance is uncertain. We surveyed American Society of Radiation Oncology radiation oncologists to ascertain practice patterns for definitive PCa RT with respect to patient instructions and set up, daily image guidance, and subsequent PTV expansions. Methods and Materials: A pattern of practice survey was sent to American Society of Radiation Oncology radiation oncologists who self-identified as specializing in PCa. Respondents identified the fractionation regimens routinely used, and their practices regarding diet, bowel, and bladder instructions for patients with PCa before RT simulation and throughout treatment. Questions regarding PTV margins, daily set up practices, and use of image guidance were included. Results: Of 190 respondents, 158 reported using conventional fractionation (CFx), 49 moderate hypofractionation (MHFx), and 61 stereotactic body radiation therapy (SBRT). Diet modifications during RT were advised by 84% of respondents, treatment with full bladder by 96%, and bowel instructions by 78%. Prescription of bowel medication was higher for respondents using SBRT (95.1%) versus those using CFx/MHFx (55.1%; 34.7%). The most common implantable device reported was fiducial markers, with increased use in SBRT (86.0%; 68.9%) versus CFx/MHFx. Cone beam computed tomography was the most common daily imaging technique across fractionation regimens. SBRT showed correlation between PTV margin expansions, fiducial marker use, and image guidance. Conclusions: Survey results indicate heterogeneity in treatment modality, dose, patient instructions, and PTV expansions used by radiation oncologists in the treatment of patients with PCa. Further investigation to define appropriate patient instructions on bowel preparation to maximize target reproducibility in PCa is needed, as is continued guidance on evidence-based approaches for image guidance and PTV margin selection.
ABSTRACT
PURPOSE: There is no consensus on appropriate organ at risk (OAR) constraints for short-course radiotherapy for patients with glioblastoma. Using dosimetry and prospectively-collected toxicity data from a trial of short-course radiotherapy for glioblastoma, this study aims to empirically examine the OAR constraints, with particular attention to left hippocampus dosimetry and impact on neuro-cognitive decline. METHODS AND MATERIALS: Data was taken from a randomized control trial of 133 adults (age 18-70 years; ECOG performance score 0-2) with newly diagnosed glioblastoma treated with 60 Gy in 30 (conventional arm) versus 20 (short-course arm) fractions of adjuvant chemoradiotherapy (ClinicalTrials.gov Identifier: NCT02206230). The delivered plan's dosimetry to the OARs was correlated to prospective-collected toxicity and Mini-Mental State Examination (MMSE) data. RESULTS: Toxicity events were not significantly increased in the short-course arm versus the conventional arm. Across all OARs, delivered radiation doses within protocol-allowable maximum doses correlated with lack of grade ≥ 2 toxicities in both arms (p < 0.001), while patients with OAR doses at or above protocol limits correlated with increased grade ≥ 2 toxicities across all examined OARs in both arms (p-values 0.063-0.250). Mean left hippocampus dose was significantly associated with post-radiotherapy decline in MMSE scores (p = 0.005), while the right hippocampus mean dose did not reach statistical significance (p = 0.277). Compared to the original clinical plan, RapidPlan left hippocampus sparing model decreased left hippocampus mean dose by 43 % (p < 0.001), without compromising planning target volume coverage. CONCLUSIONS: In this trial, protocol OAR constraints were appropriate for limiting grade ≥ 2 toxicities in conventional and short-course adjuvant chemoradiotherapy for glioblastoma. Higher left hippocampal mean doses were predictive for neuro-cognitive decline post-radiotherapy. Routine contouring and use of dose constraints to limit hippocampal dose is recommended to minimize neuro-cognitive decline in patients with glioblastoma treated with chemoradiotherapy.
Subject(s)
Glioblastoma , Radiotherapy, Intensity-Modulated , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Glioblastoma/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Prospective Studies , Radiometry , Radiotherapy Dosage , Organs at RiskABSTRACT
Purpose: This phase 1 trial aimed to identify the maximally tolerated hypofractionated dose schedule for postoperative radiation therapy (PORT) after radical prostatectomy. Secondary objectives included biochemical control and quality of life (QoL) measures. Methods and Materials: Patients were treated on 1 of 3 dose levels (DLs): 56.4 Gy in 20 fractions (DL1), 51.2 Gy in 15 fractions (DL2), and 44.2 Gy in 10 fractions (DL3). Treatment was delivered to the prostate bed without pelvic nodal irradiation. Dose escalation followed a standard 3 + 3 design with an expansion for 6 additional patients at the maximally tolerated hypofractionated dose schedule. Acute dose-limiting toxicity (DLT) was defined as grade 3 toxicity lasting >4 days within 21 days of PORT completion; late DLT was defined as grade 4 gastrointestinal (GI) or genitourinary (GU) toxicity. Results: Between January 2018 and August 2019, 15 patients underwent radiation treatment: 3 on DL1, 3 on DL2, and 9 on DL3. The median follow-up was 24 months. There were no DLTs, and the maximally tolerated hypofractionated dose schedule was identified as DL3. Two of the 15 patients (13.3%) experienced biochemical failure (prostate-specific antigen >0.1). Ten of 15 patients (67%) had grade 2+ acute toxicities, consisting of transient GI toxicities. Three patients experienced late grade 2+ GI toxicity, and 5 patients experienced late grade 2+ GU toxicity. Late grade 3 GU toxicity occurred in 2 patients. There were no grade 4+ acute or late toxicities. There were no significant differences in GI measures of QoL, however, there was an increase in GU symptoms and corresponding decrease in GU QoL between 12 and 24 months. Conclusions: The maximum tolerated hypofractionated dose schedule for hypofractionated PORT to the prostate bed was determined to be 44.2 Gy in 10 daily fractions. The most frequent clinically significant toxicities were late grade 2+ GU toxicities, which corresponded to a worsening of late GU QoL.
ABSTRACT
OBJECTIVE: This study examined the anatomical assumptions underlying multiplanar alar ligament stress testing. The alar ligament has been described as occurring in 1 of 3 planes: caudocranial, horizontal, and craniocaudal. This has been stated to result from variation in dens height. Stress testing in all 3 planes is suggested, with increased translation present in all positions to infer instability. METHODS: Computed tomography scans with no diagnosed bony or ligamentous abnormally were prospectively collected over a 3-month period from a teaching hospital in Newcastle, Australia, and sequentially analyzed. The height of the dens relative to the occipital condyles was measured using McRae's line and the bimastoid line. The orientation of the alar ligament was measured relative to the vertical axis of the dens as well as a vertical line defined by specified occipital and spinal bony landmarks. These results were correlated with dens height. RESULTS: After exclusions, 42 individual computed tomography studies were analyzed yielding 64 clearly discernible ligaments. A vertical line derived from the digastric line provided the smallest variation in results. The mean ligament orientation given by this measure was 110.06° (85°-127°). There was no correlation between measured dens height relative to the occiput and ligament orientation. CONCLUSION: Our findings reinforce the existence of normal anatomical variation in dens height and alar ligament orientation. However, variation in dens height as a cause of variation in ligament orientation was not supported by this study.
Subject(s)
Cervical Vertebrae/diagnostic imaging , Ligaments/diagnostic imaging , Odontoid Process/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Occipital Bone/diagnostic imaging , Tomography, X-Ray Computed , Young AdultABSTRACT
Aneurysmal fibrous histiocytoma (AFH) is a rare variant of cutaneous fibrous histiocytoma, with low malignant potential and infrequent metastatic progression. We present the case of a 19-year-old female with a large AFH of the neck metastatic to soft tissue and treated with radiation therapy and molecularly targeted therapy. To our knowledge, this is the first report describing either radiation therapy and palliation or the use of targeted therapy in this uncommon malignancy and can provide insight into future therapeutic strategies.
ABSTRACT
Androgen deprivation therapy (ADT) used for prostate cancer (PCa) management is associated with metabolic and anthropometric toxicity. Metformin given concurrent to ADT is hypothesized to counteract these changes. This planned interim analysis reports the gastrointestinal and genitourinary toxicity profiles of PCa patients receiving ADT and prostate/pelvic radiotherapy plus metformin versus placebo as part of a phase 2 randomized controlled trial. Men with intermediate or high-risk PCa were randomized 1:1 to metformin versus placebo. Both groups were given ADT for 18-36 months with minimum 2-month neoadjuvant phase prior to radiotherapy. Acute gastrointestinal and genitourinary toxicities were quantified using CTCAE v4.0. Differences in ≥ grade 2 toxicities by treatment were assessed by chi-squared test. 83 patients were enrolled with 44 patients randomized to placebo and 39 randomized to metformin. There were no significant differences at any time point in ≥ grade 2 gastrointestinal toxicities or overall gastrointestinal toxicity. Overall ≥ grade 2 gastrointestinal toxicity was low prior to radiotherapy (7.9% (placebo) vs. 3.1% (metformin), p = 0.39) and at the end of radiotherapy (2.8% (placebo) vs 3.1% (metformin), p = 0.64). There were no differences in overall ≥ grade 2 genitourinary toxicity between treatment arms (19.0% (placebo) vs. 9.4% (metformin), p = 0.30). Metformin added to radiotherapy and ADT did not increase rates of ≥ grade 2 gastrointestinal or genitourinary toxicity and is generally safe and well-tolerated.
Subject(s)
Gastrointestinal Diseases/pathology , Male Urogenital Diseases/pathology , Metformin/adverse effects , Prostatic Neoplasms/drug therapy , Aged , Aged, 80 and over , Double-Blind Method , Gastrointestinal Diseases/chemically induced , Humans , Hypoglycemic Agents/adverse effects , Male , Male Urogenital Diseases/chemically induced , Middle Aged , Prognosis , Prostatic Neoplasms/pathologyABSTRACT
BACKGROUND: Prostate Membrane Specific Antigen (PSMA) positron emission tomography (PET) and multiparametric MRI (mpMRI) have shown high accuracy in identifying recurrent lesions after definitive treatment in prostate cancer (PCa). In this study, we aimed to outline patterns of failure in a group of post-prostatectomy patients who received adjuvant or salvage radiation therapy (PORT) and subsequently experienced biochemical recurrence, using 18F-PSMA PET/CT and mpMRI. METHODS: PCa patients with biochemical failure post-prostatectomy, and no evident site of recurrence on conventional imaging, were enrolled on two prospective trials of first and second generation 18F-PSMA PET agents (18F-DCFBC and 18F-DCFPyL) in combination with MRI between October 2014 and December 2018. The primary aim of our study is to characterize these lesions with respect to their location relative to previous PORT field and received dose. RESULTS: A total of 34 participants underwent 18F-PSMA PET imaging for biochemical recurrence after radical prostatectomy and PORT, with 32/34 found to have 18F-PSMA avid lesions. On 18F-PSMA, 17/32 patients (53.1%) had metastatic disease, 8/32 (25.0%) patients had locoregional recurrences, and 7/32 (21.9%) had local failure in the prostate fossa. On further exploration, we noted 6/7 (86%) of prostate fossa recurrences were in-field and were encompassed by 100% isodose lines, receiving 64.8-72 Gy. One patient had marginal failure encompassed by the 49 Gy isodose. CONCLUSIONS: 18F-PSMA PET imaging demonstrates promise in identifying occult PCa recurrence after PORT. Although distant recurrence was the predominant pattern of failure, in-field recurrence was noted in approximately 1/5th of patients. This should be considered in tailoring radiotherapy practice after prostatectomy. Trial registration www.clinicaltrials.gov , NCT02190279 and NCT03181867. Registered July 12, 2014, https://clinicaltrials.gov/ct2/show/NCT02190279 and June 8 2017, https://clinicaltrials.gov/ct2/show/NCT03181867 .
Subject(s)
Molecular Imaging/methods , Neoplasm Recurrence, Local/pathology , Positron-Emission Tomography/methods , Prostatectomy/adverse effects , Prostatic Neoplasms/pathology , Radiotherapy/adverse effects , Aged , Antigens, Surface/metabolism , Combined Modality Therapy , Follow-Up Studies , Glutamate Carboxypeptidase II/metabolism , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/therapy , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , Retrospective Studies , Treatment FailureABSTRACT
Glioblastoma (GBM) is a challenging diagnosis with almost universally poor prognosis. Though the survival advantage of postoperative radiation (RT) is well established, around 90% of patients will fail in the RT field. The high likelihood of local failure suggests the efficacy of RT needs to be improved to improve clinical outcomes. Radiosensitizers are an established method of enhancing RT cell killing through the addition of a pharmaceutical agent. Though the majority of trials using radiosensitizers have historically been unsuccessful, there continues to be interest with a variety of approaches having been employed. Epidermal growth factor receptor inhibitors, histone deacetylase inhibitors, antiangiogenic agents, and a number of other molecularly targeted agents have all been investigated as potential methods of radiosensitization in the temozolomide era. Outcomes have varied both in terms of toxicity and survival, but some agents such as valproic acid and bortezomib have demonstrated promising results. However, reporting of results in phase 2 trials in newly diagnosed GBM have been inconsistent, with no standard in reporting progression-free survival and toxicity. There is a pressing need for investigation of new agents; however, nearly all phase 3 trials of GBM patients of the past 25 years have demonstrated no improvement in outcomes. One proposed explanation for this is the selection of agents lacking sufficient preclinical data and/or based on poorly designed phase 2 trials. Radiosensitization may represent a viable strategy for improving GBM outcomes in newly diagnosed patients, and further investigation using agents with promising phase 2 data is warranted.
ABSTRACT
PURPOSE: Apical periurethral transition zone (TZ) cancers can pose unique problems for surgery and radiation therapy. Here, we describe the appearance of such cancers on multiparametric MRI (mpMRI) and correlate this with histopathology derived from MRI-targeted biopsy. MATERIALS AND METHODS: Between May 2011 and January 2019, a total of 4381 consecutive patients underwent 3 T mpMRI. Of these, 53 patients with 58 apical periurethral TZ lesions underwent TRUS/MRI fusion-guided biopsy and 12-core systematic TRUS-guided biopsy. Correlation was made with patient age, PSA, PSA density, whole prostate volume, and Gleason scores. RESULTS: A total 53 men (median age 68 years, median PSA 7.94 ng/ml) were identified as having at least one apical periurethral TZ lesion on mpMRI and 5 (9%) patients had more than one apical periurethral lesion. Thus, 58 lesions were identified in 53 patients. Of these 37/53 patients (69%) and 40/58 lesions were positive at biopsy for prostate cancer. Seven were diagnosed by 12-core systematic TRUS-guided biopsy and 34 were diagnosed by TRUS/MRI fusion-guided biopsy. Gleason score was ≥ 3 + 4 in 34/58 (58%) lesions. CONCLUSION: Identification of apical periurethral TZ prostate cancers is important to help guide surgical and radiation therapy as these tumors are adjacent to critical structures. Because of the tendency to undersample the periurethral zone during TRUS biopsy, MRI-guided biopsy is particularly helpful for detecting apical periurethral TZ prostate cancers many of which prove to be clinically significant.
Subject(s)
Magnetic Resonance Imaging, Interventional , Prostatic Neoplasms , Aged , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Male , Neoplasm Grading , Prostatic Neoplasms/diagnostic imagingABSTRACT
BACKGROUND: Oligodendroglioma is a rare primary central nervous system (CNS) tumor with highly variable outcome and for which therapy is usually not curative. At present, little is known regarding the pathways involved with progression of oligodendrogliomas or optimal biomarkers for stratifying risk. Developing new therapies for this rare cancer is especially challenging. To overcome these challenges, the neuro-oncology community must be particularly innovative, seeking multi-institutional and international collaborations, and establishing partnerships with patients and advocacy groups thereby ensuring that each patient enrolled in a study is as informative as possible. METHODS: The mission of the National Cancer Institute's NCI-CONNECT program is to address the challenges and unmet needs in rare CNS cancer research and treatment by connecting patients, health care providers, researchers, and advocacy organizations to work in partnership. On November 19, 2018, the program convened a workshop on oligodendroglioma, one of the 12 rare CNS cancers included in its initial portfolio. The purpose of this workshop was to discuss scientific progress and regulatory challenges in oligodendroglioma research and develop a call to action to advance research and treatment for this cancer. RESULTS: The recommendations of the workshop include a multifaceted and interrelated approach covering: biology and preclinical models, data sharing and advanced molecular diagnosis and imaging; clinical trial design; and patient outreach and engagement. CONCLUSIONS: The NCI-CONNECT program is well positioned to address challenges in oligodendroglioma care and research in collaboration with other stakeholders and is developing a list of action items for future initiatives.