Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Bacteriol ; 206(6): e0016224, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38814092

ABSTRACT

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.


Subject(s)
Anti-Bacterial Agents , Citric Acid Cycle , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Citric Acid Cycle/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Escherichia coli Infections/microbiology
2.
J Bacteriol ; 205(11): e0031023, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37905811

ABSTRACT

IMPORTANCE: With the lack of new antibiotics in the drug discovery pipeline, coupled with accelerated evolution of antibiotic resistance, new sources of antibiotics that target pathogens of clinical importance are paramount. Here, we use bacterial cytological profiling to identify the mechanism of action of the monounsaturated fatty acid (Z)-13-methyltetra-4-decenoic acid isolated from the marine bacterium Olleya marilimosa with antibacterial effects against Gram-positive bacteria. The fatty acid antibiotic was found to rapidly destabilize the cell membrane by pore formation and membrane aggregation in Bacillus subtilis, suggesting that this fatty acid may be a promising adjuvant used in combination to enhance antibiotic sensitivity.


Subject(s)
Anti-Bacterial Agents , Fatty Acids , Fatty Acids/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Gram-Positive Bacteria/metabolism , Cell Membrane/metabolism , Bacillus subtilis/metabolism , Microbial Sensitivity Tests , Gram-Negative Bacteria/metabolism
3.
J Bacteriol ; 202(20)2020 09 23.
Article in English | MEDLINE | ID: mdl-32778561

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


Subject(s)
Escherichia coli Infections/microbiology , Peptidoglycan/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/growth & development , Anti-Bacterial Agents/therapeutic use , Cell Division , Epithelial Cells/microbiology , Humans , Quorum Sensing , Uropathogenic Escherichia coli/metabolism
4.
Curr Microbiol ; 77(8): 1412-1418, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32189048

ABSTRACT

Ectoine is widely produced by various bacteria as a natural cell protectant against environment stress, e.g., osmotic and temperature stress. Its protective properties therefore exhibit high commercial value, especially in agriculture, medicine, cosmetics, and biotechnology. Here, we successfully constructed an engineered Escherichia coli for the heterologous production of ectoine. Firstly, the ectABC genes from Halomonas elongata were introduced into E. coli MG1655 to produce ectoine without high osmolarity. Subsequently, lysA gene was deleted to weaken the competitive L-lysine biosynthesis pathway and ectoine bioconversion was further optimized, leading to an increase of ectoine titer by 16.85-fold. Finally, at the low cell density of 5 OD600/mL in Erlenmeyer flask, the concentration of extracellular ectoine was increased to 3.05 mg/mL. At the high cell density of 15 OD600/mL, 12.7 g/L of ectoine was achieved in 24 h and the overall yield is 1.27 g/g glycerol and sodium aspartate. Our study herein provides a feasible and valuable biosynthesis pathway of ectoine with a potential for large-scale industrial production using simple and cheap feedstocks.


Subject(s)
Amino Acids, Diamino/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Networks and Pathways , Aspartic Acid/metabolism , Bacterial Proteins/genetics , Fermentation , Glycerol/metabolism , Halomonas/genetics , Industrial Microbiology , Metabolic Engineering
5.
Appl Environ Microbiol ; 85(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30389771

ABSTRACT

Phaeobacter inhibens S4Sm acts as a probiotic bacterium against the oyster pathogen Vibrio coralliilyticus Here, we report that P. inhibens S4Sm secretes three molecules that downregulate the transcription of major virulence factors, metalloprotease genes, in V. coralliilyticus cultures. The effects of the S4Sm culture supernatant on the transcription of three genes involved in protease activity, namely, vcpA, vcpB, and vcpR (encoding metalloproteases A and B and their transcriptional regulator, respectively), were examined by reverse transcriptase quantitative PCR (qRT-PCR). The expression of vcpB and vcpR were reduced to 36% and 6.6%, respectively, compared to that in an untreated control. We constructed a V. coralliilyticus green fluorescent protein (GFP) reporter strain to detect the activity of inhibitory compounds. Using a bioassay-guided approach, the molecules responsible for V. coralliilyticus protease inhibition activity were isolated from S4Sm supernatant and identified as three N-acyl homoserine lactones (AHLs). The three AHLs are N-(3-hydroxydecanoyl)-l-homoserine lactone, N-(dodecanoyl-2,5-diene)-l-homoserine lactone, and N-(3-hydroxytetradecanoyl-7-ene)-l-homoserine lactone, and their half maximal inhibitory concentrations (IC50s) against V. coralliilyticus protease activity were 0.26 µM, 3.7 µM, and 2.9 µM, respectively. Our qRT-PCR data demonstrated that exposures to the individual AHLs reduced the transcription of vcpR and vcpB Combinations of the three AHLs (any two or all three AHLs) on V. coralliilyticus produced additive effects on protease inhibition activity. These AHL compounds may contribute to the host protective effects of S4Sm by disrupting the quorum sensing pathway that activates protease transcription of V. coralliilyticusIMPORTANCE Probiotics represent a promising alternative strategy to control infection and disease caused by marine pathogens of aquaculturally important species. Generally, the beneficial effects of probiotics include improved water quality, control of pathogenic bacteria and their virulence, stimulation of the immune system, and improved animal growth. Previously, we isolated a probiotic bacterium, Phaeobacter inhibens S4Sm, which protects oyster larvae from Vibrio coralliilyticus RE22Sm infection. We also demonstrated that both antibiotic secretion and biofilm formation play important roles in S4Sm probiotic activity. Here, we report that P. inhibens S4Sm, an alphaproteobacterium and member of the Roseobacter clade, also secretes secondary metabolites that hijack the quorum sensing ability of V. coralliilyticus RE22Sm, suppressing virulence gene expression. This finding demonstrates that probiotic bacteria can exert their host protection by using a multipronged array of behaviors that limit the ability of pathogens to become established and cause infection.


Subject(s)
Acyl-Butyrolactones/metabolism , Down-Regulation , Gene Expression Regulation, Bacterial , Rhodobacteraceae/physiology , Vibrio/drug effects , Virulence Factors/genetics , Probiotics/chemistry , Transcription, Genetic , Vibrio/genetics , Vibrio/metabolism , Virulence Factors/metabolism
6.
Mar Drugs ; 17(7)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266202

ABSTRACT

Quorum sensing (QS) antagonists have been proposed as novel therapeutic agents to combat bacterial infections. We previously reported that the secondary metabolite 3-methyl-N-(2'-phenylethyl)-butyramide, produced by a marine bacterium identified as Halobacillus salinus, inhibits QS controlled phenotypes in multiple Gram-negative reporter strains. Here we report that N-phenethyl hexanamide, a structurally-related compound produced by the marine bacterium Vibrio neptunius, similarly demonstrates QS inhibitory properties. To more fully explore structure-activity relationships within this new class of QS inhibitors, a panel of twenty analogs was synthesized and biologically evaluated. Several compounds were identified with increased attenuation of QS-regulated phenotypes, most notably N-(4-fluorophenyl)-3-phenylpropanamide against the marine pathogen Vibrio harveyi (IC50 = 1.1 µM). These findings support the opportunity to further develop substituted phenethylamides as QS inhibitors.


Subject(s)
Amides/pharmacology , Anti-Bacterial Agents/pharmacology , Halobacillus/metabolism , Quorum Sensing/drug effects , Amides/chemistry , Amides/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Inhibitory Concentration 50 , Secondary Metabolism , Structure-Activity Relationship , Vibrio/drug effects , Vibrio/physiology
7.
Mar Drugs ; 16(6)2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29875351

ABSTRACT

Marine actinobacteria continue to be a rich source for the discovery of structurally diverse secondary metabolites. Here we present a new hydroxymate siderophore produced by Amycolatopsis albispora, a recently described species of this less explored actinomycete genus. Strain WP1T was isolated from sediments collected at -2945 m in the Indian Ocean. The new siderophore, designated albisporachelin, was isolated from iron depleted culture broths and the structure was established by 1D and 2D NMR and MS/MS experiments, and application of a modified Marfey's method. Albisporachelin is composed of one N-methylated-formylated/hydroxylated l-ornithine (N-Me-fh-l-Orn), one l-serine (l-Ser), one formylated/hydroxylated l-ornithine (fh-l-Orn) and a cyclo-N-methylated-hydroxylated l-ornithine (cyclo-N-Me-h-l-Orn).


Subject(s)
Actinomycetales/chemistry , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Hydroxamic Acids/chemistry , Lipids/chemistry , Ornithine/analogs & derivatives , Seawater/microbiology , Siderophores/chemistry , Indian Ocean , Iron/chemistry , Ornithine/chemistry
8.
Appl Environ Microbiol ; 83(17)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28667113

ABSTRACT

Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a ß-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.

9.
J Nat Prod ; 79(2): 447-50, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26824128

ABSTRACT

Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 µM) that compares favorably to the commercially used control compounds kojic acid (46 µM) and arbutin (100 µM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea.


Subject(s)
Monophenol Monooxygenase/antagonists & inhibitors , Proteobacteria/chemistry , Tyrosine , Arbutin/pharmacology , Gram-Negative Bacteria/chemistry , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pyrones/pharmacology , Spain , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Tyrosine/isolation & purification , Tyrosine/pharmacology
10.
J Nat Prod ; 78(3): 402-12, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25646964

ABSTRACT

Members of the resistance nodulation cell division (RND) of efflux pumps play essential roles in multidrug resistance (MDR) in Gram-negative bacteria. Here, we describe the search for new small molecules from marine microbial extracts to block efflux and thus restore antibiotic susceptibility in MDR bacterial strains. We report the isolation of 3,4-dibromopyrrole-2,5-dione (1), an inhibitor of RND transporters, from Enterobacteriaceae and Pseudomonas aeruginosa, from the marine bacterium Pseudoalteromonas piscicida. 3,4-Dibromopyrrole-2,5-dione decreased the minimum inhibitory concentrations (MICs) of two fluoroquinolones, an aminoglycoside, a macrolide, a beta-lactam, tetracycline, and chloramphenicol between 2- and 16-fold in strains overexpressing three archetype RND transporters (AcrAB-TolC, MexAB-OprM, and MexXY-OprM). 3,4-Dibromopyrrole-2,5-dione also increased the intracellular accumulation of Hoechst 33342 in wild-type but not in transporter-deficient strains and prevented H33342 efflux (IC50 = 0.79 µg/mL or 3 µM), a hallmark of efflux pump inhibitor (EPI) functionality. A metabolomic survey of 36 Pseudoalteromonas isolates mapped the presence of primarily brominated metabolites only within the P. piscicida phylogenetic clade, where a majority of antibiotic activity was also observed, suggesting a link between halogenation and enhanced secondary metabolite biosynthetic potential. In sum, 3,4-dibromopyrrole-2,5-dione is a potent EPI and deserves further attention as an adjuvant to enhance the effectiveness of existing antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudoalteromonas/chemistry , Pyrroles/pharmacology , Benzimidazoles/analysis , Benzimidazoles/pharmacology , Drug Resistance, Multiple/drug effects , Fluorescent Dyes/analysis , Fluorescent Dyes/pharmacology , Gram-Negative Bacteria/metabolism , Membrane Transport Proteins , Metabolomics , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pseudomonas aeruginosa , Pyrroles/chemistry
11.
J Asian Nat Prod Res ; 17(2): 199-216, 2015.
Article in English | MEDLINE | ID: mdl-25559315

ABSTRACT

Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed.


Subject(s)
Antineoplastic Agents , Biological Products , Marine Biology , Molecular Structure
12.
Mol Pharm ; 11(10): 3528-36, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25157458

ABSTRACT

Multidrug-resistant pathogens have become a major public health concern. There is a great need for the development of novel antibiotics with alternative mechanisms of action for the treatment of life-threatening bacterial infections. Antimicrobial peptides, a major class of antibacterial agents, share amphiphilicity and cationic structural properties with cell-penetrating peptides (CPPs). Herein, several amphiphilic cyclic CPPs and their analogues were synthesized and exhibited potent antibacterial activities against multidrug-resistant pathogens. Among all the peptides, cyclic peptide [R4W4] (1) showed the most potent antibacterial activity against methicillin-resistant Staphylococcus aureus [MRSA, exhibiting a minimal inhibitory concentration (MIC) of 2.67 µg/mL]. Cyclic [R4W4] and the linear counterpart R4W4 exhibited MIC values of 42.8 and 21.7 µg/mL, respectively, against Pseudomonas aeruginosa. In eukaryotic cells, peptide 1 exhibited the expected cell penetrating properties and showed >84% cell viability at a concentration of 15 µM (20.5 µg/mL) in three different human cell lines. Twenty-four hour time-kill studies evaluating [R4W4] with 2 times the MIC in combination with tetracycline demonstrated bactericidal activity at 4 and 8 times the MIC of tetracycline against MRSA (MIC = 0.5 µg/mL) and 2-8 times the MIC against Escherichia coli (MIC = 2 µg/mL). This study suggests that when amphiphilic cyclic CPPs are used in combination with an antibiotic such as tetracycline, they provide significant benefit against multidrug-resistant pathogens when compared with the antibiotic alone.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Anti-Bacterial Agents/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects
13.
Microbiol Resour Announc ; 12(2): e0087322, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36656017

ABSTRACT

Here, we announce the draft genome sequence of Vibrio parahaemolyticus strain PSU5579, isolated from a shrimp hatchery in southern Thailand during an outbreak of acute hepatopancreatic necrosis disease (AHPND). The genome contains 44 contigs with a sequence length of 5,229,426 bp, 4,861 coding sequences, and a G+C content of 45.3%.

14.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37215002

ABSTRACT

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after completion of successful antibiotic treatment. Many clinical isolates, including the well characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex IHF and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two hybrid assays. We report direct interactions between succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions likely enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility.

15.
Parasitol Res ; 111(6): 2473-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22763704

ABSTRACT

Entamoeba histolytica infects 50 million people per year, causing 100,000 deaths worldwide. The primary treatment for amoebiasis is metronidazole. However, increased pathogen resistance combined with the drug's toxic side effects encourages a search for alternative therapeutic agents. Secondary metabolites from marine bacteria are a promising resource for antiprotozoan drug discovery. In this study, extracts from a collection of marine-derived actinomycetes were screened for antiamoebic properties, and the activities of antibiotics echinomycin A and tirandamycin A are shown. Both antibiotics inhibited the in vitro growth of a E. histolytica laboratory strain (HM-1:IMSS) and a clinical isolate (Colombia, Col) at 30- to 60-µM concentrations. EIC(50) (estimated inhibitory concentration) values were comparable for both antibiotics (44.3-46.3 µM) against the E. histolytica clinical isolate.


Subject(s)
Actinobacteria/isolation & purification , Aminoglycosides/pharmacology , Antiprotozoal Agents/pharmacology , Echinomycin/pharmacology , Entamoeba histolytica/drug effects , Actinobacteria/chemistry , Actinobacteria/classification , Actinobacteria/metabolism , Aminoglycosides/isolation & purification , Antiprotozoal Agents/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Echinomycin/isolation & purification , Entamoeba histolytica/isolation & purification , Entamoebiasis/parasitology , Environmental Microbiology , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , Parasitic Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Phytother Res ; 26(9): 1371-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22294419

ABSTRACT

Biofilm producing bacteria such as Staphylococcus species and Escherichia coli are the most common cause of catheter related urinary tract infections (UTIs). The American cranberry (Vaccinium macrocarpon) is utilized widely as a prophylaxis for UTIs due to its prevention of microbial adhesion. Cranberry contains proanthocyanidins (PACs), which have been implicated as active constituents responsible for its bacterial antiadhesive properties. Despite overwhelming data supporting cranberry's beneficial effects against human pathogenic bacteria, there is limited information regarding its effects on biofilm formation. This study evaluated the effects of three proprietary PAC-standardized cranberry extracts on the inhibition of bacterial growth and biofilm production against a panel of clinically relevant pathogens: Staphylococcus epidermidis, Staphylococcus aureus, clinical methicillin-resistant S. aureus (MRSA), Staphylococcus saprophyticus and Escherichia coli. The extracts inhibited the growth of the Gram-positive bacteria (Staphylococcus spp.) but not the Gram-negative species (E. coli) with minimum inhibitory concentrations in the range 0.02-5 mg/mL. The extracts also inhibited biofilm production by the Gram-positive bacteria but did not eradicate their established biofilm. These results suggest that cranberry may have beneficial effects against the growth and biofilm producing capability of Gram-positive bacteria pathogens.


Subject(s)
Biofilms/drug effects , Escherichia coli/drug effects , Plant Extracts/pharmacology , Staphylococcus/drug effects , Vaccinium macrocarpon/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Fruit/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Proanthocyanidins/pharmacology
17.
RSC Adv ; 12(53): 34531-34547, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545587

ABSTRACT

Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.

18.
ACS Omega ; 7(40): 35677-35685, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36249352

ABSTRACT

Infections caused by the bacterium Staphylococcus aureus continue to pose threats to human health and put a financial burden on the healthcare system. The overuse of antibiotics has contributed to mutations leading to the emergence of methicillin-resistant S. aureus, and there is a critical need for the discovery and development of new antibiotics to evade drug-resistant bacteria. Medicinal plants have shown promise as sources of new small-molecule therapeutics with potential uses against pathogenic infections. The principal Rhode Island secondary metabolite (PRISM) library is a botanical extract library generated from specimens in the URI Youngken Medicinal Garden by upper-division undergraduate students. PRISM extracts were screened for activity against strains of methicillin-susceptible S. aureus (MSSA). An extract generated from the tulip tree (Liriodendron tulipifera) demonstrated growth inhibition against MSSA, and a bioassay-guided approach identified a sesquiterpene lactone, laurenobiolide, as the active constituent. Intriguingly, its isomers, tulipinolide and epi-tulipinolide, lacked potent activity against MSSA. Laurenobiolide also proved to be more potent against MSSA than the structurally similar sesquiterpene lactones, costunolide and dehydrocostus lactone. Laurenobiolide was the most abundant in the twig bark of the tulip tree, supporting the twig bark's historical and cultural usage in poultices and teas.

19.
Microbiol Resour Announc ; 10(36): e0021221, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34498923

ABSTRACT

We report the draft genome sequence for Pseudoalteromonas sp. strain JC3, an isolate obtained from an aquaculture facility for whiteleg shrimp (Litopenaeus vannamei). The JC3 genome suggests multiple mechanisms for microbial interactions, including a type VI secretion system and potential for antibiotic production.

20.
Cell Death Discov ; 7(1): 232, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34482371

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) promote immunosuppressive activities in the tumor microenvironment (TME), resulting in increased tumor burden and diminishing the anti-tumor response of immunotherapies. While primary and metastatic tumors are typically the focal points of therapeutic development, the immune cells of the TME are differentially programmed by the tissue of the metastatic site. In particular, MDSCs are programmed uniquely within different organs in the context of tumor progression. Given that MDSC plasticity is shaped by the surrounding environment, the proteomes of MDSCs from different metastatic sites are hypothesized to be unique. A bottom-up proteomics approach using sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to quantify the proteome of CD11b+ cells derived from murine liver metastases (LM) and lung metastases (LuM). A comparative proteomics workflow was employed to compare MDSC proteins from LuM (LuM-MDSC) and LM (LM-MDSC) while also elucidating common signaling pathways, protein function, and possible drug-protein interactions. SWATH-MS identified 2516 proteins from 200 µg of sample. Of the 2516 proteins, 2367 have matching transcriptomic data. Upregulated proteins from lung and liver-derived murine CD11b+ cells with matching mRNA transcriptomic data were categorized based on target knowledge and level of drug development. Comparative proteomic analysis demonstrates that liver and lung tumor-derived MDSCs have distinct proteomes that may be subject to pharmacologic manipulation.

SELECTION OF CITATIONS
SEARCH DETAIL