Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Cancer ; 24(1): 772, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937681

ABSTRACT

BACKGROUND: Wilms tumor is the most prevalent embryonal kidney malignancy in children worldwide. Previous genome-wide association study (GWAS) identified that LIM domain only 1 (LMO1) gene polymorphisms affected the susceptibility to develop certain tumor types. Apart from LMO1, the LMO gene family members also include LMO2-4, each of which has oncogenic potential. METHODS: We conducted this five-center case‒control study to assess the correlations between single nucleotide polymorphisms in LMO family genes and Wilms tumor susceptibility. Odds ratios and 95% confidence intervals were calculated to evaluate the strength of the association. RESULTS: We found LMO1 rs2168101 G > T and rs11603024 C > T as well as LMO2 rs7933499 G > A were significantly associated with Wilms tumor risk. Stratified analysis demonstrated a protective role of rs2168101 GT/TT genotypes against Wilms tumor in the subgroups of age ≤ 18 months, males and clinical stages I/II compared to the rs2168101 GG genotype. Nevertheless, carriers with the rs11603024 TT genotype were more likely to have an increased risk of Wilms tumor than those with rs11603024 CC/CT genotypes in age > 18 months. And the rs11603024 was identified as a protective polymorphism for reducing the risk of Wilms tumor in the sex- and gender- subgroup. Likewise, carriers with the rs7933499 GA/AA genotypes were at significantly elevated risk of Wilms tumor in age ≤ 18 months and clinical stages I/II. CONCLUSION: Overall, our study identified the importance of LMO family gene polymorphisms on Wilms tumor susceptibility in Chinese children. Further investigations are needed to validate our conclusions.


Subject(s)
Genetic Predisposition to Disease , Kidney Neoplasms , LIM Domain Proteins , Polymorphism, Single Nucleotide , Wilms Tumor , Child , Child, Preschool , Female , Humans , Infant , Male , Adaptor Proteins, Signal Transducing/genetics , Case-Control Studies , China/epidemiology , DNA-Binding Proteins/genetics , East Asian People/genetics , Genotype , Kidney Neoplasms/genetics , LIM Domain Proteins/genetics , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , Wilms Tumor/genetics , Multigene Family
2.
Hematology ; 29(1): 2375045, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39012197

ABSTRACT

OBJECTIVES: Constitutive activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway is central to the pathogenesis of myeloproliferative neoplasms (MPNs). Long noncoding RNAs (lncRNAs) regulate diverse biological processes. However, the role of lncRNAs in MPN pathogenesis is not well studied. METHODS: The expression of lnc-AC004893 in MPN patients was measured by quantitative real-time PCR (qRT-PCR). Gene-specific short hairpin RNAs (shRNAs) were designed to inhibit the expression of lnc-AC004893, and western blot was performed to explore the role of lnc-AC004893 via regulating the JAK2/STAT5 signaling pathway. Furthermore, co-IP was performed to determine the binding ability of lnc-AC004893 and STAT5 protein. Finally, the BaF3-JAK2V617F-transplanted mouse model was used to assess the biological role of lnc-ac004893 in vivo. RESULTS: We report that lnc-AC004893, a poorly conserved pseudogene-209, is substantially upregulated in MPN cells compared with normal controls (NCs). Knockdown of lnc-AC004893 by specific shRNAs suppressed cell proliferation and decreased colony formation. Furthermore, the knockdown of lnc-AC004893 reduced the expression of p-STAT5 but not total STAT5 in HEL and murine IL-3-dependent Ba/F3 cells, which present constitutive and inducible activation of JAK2/STAT5 signaling. In addition, inhibition of murine lnc-ac004893 attenuated BaF3-JAK2V617F-transplanted phenotypes and extended the overall survival. Mechanistically, knockdown of lnc-AC004893 enhanced the binding ability of STAT5 and protein tyrosine phosphatase SHP1. Furthermore, knockdown of lnc-AC004893 decreased STAT5-lnc-AC004893 interaction but not SHP1-lnc-AC004893 interaction. CONCLUSION: Lnc-AC004893 regulates STAT5 phosphorylation by affecting the interaction of STAT5 and SHP1. Lnc-AC004893 might be a potential therapeutic target for MPN patients.


Subject(s)
Myeloproliferative Disorders , RNA, Long Noncoding , STAT5 Transcription Factor , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , RNA, Long Noncoding/genetics , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Mice , Animals , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Signal Transduction , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
J Cancer ; 15(4): 1067-1076, 2024.
Article in English | MEDLINE | ID: mdl-38230206

ABSTRACT

Background: Glioblastoma (GBM) is a type of central nervous system malignancy. In our study, we determined the effect of NCDN in GBM patients through The Cancer Genome Atlas (TCGA) data analysis, and studied the effects of NCDN on GBM cell function to estimate its potential as a therapeutic target. Methods: Gene expression profiles of glioblastoma cohort were acquired from TCGA database and analyzed to look for central genes that may serve as GBM therapeutic targets. Then the cell function of NCDN in glioblastoma cell was explored through in vitro cell experiments. Results: Through gene ontology (GO) analysis, weighted gene co-expression network analysis (WGCNA), and survival analysis, we identified three key genes (NCDN, PAK1 and SPRYD3) associated with poor prognosis in glioblastoma. In vitro experiments showed impaired cell migration, apoptosis, and cell cycle arrest in NCDN knockdown cells. Conclusion: NCDN affects the progress and prognosis of glioblastoma by promoting cell migration and inhibiting apoptosis.

4.
Cancer Rep (Hoboken) ; 7(7): e2136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041645

ABSTRACT

BACKGROUND: Glioma is the most prevalent pediatric central nervous system malignancy. RAN, member RAS oncogene family (RAN), is a key signaling molecule that regulates the polymerization of microtubules during mitosis. RAN binding protein 2 (RANBP2) is involved in DNA replication, mitosis, metabolism, and tumorigenesis. The effects of RAN and RANBP2 gene polymorphisms on glioma susceptibility in Chinese children are currently unknown. AIMS: This study aimed to evaluate the association between RAN and RANBP2 gene polymorphisms and glioma susceptibility in Chinese children. METHODS AND RESULTS: We recruited 191 patients with glioma and 248 children without cancer for this case-control study. Polymerase chain reaction-based TaqMan was applied to gene sequencing and typing. Logistic regression model-calculated odds ratio and 95% confidence interval were used to verify whether the gene polymorphisms (RAN rs56109543 C>T, rs7132224 A>G, rs14035 C>T, and RANBP2 rs2462788 C>T) influence glioma susceptibility. Based on age, gender, tumor subtype, and clinical stage, stratified analyses of risk and protective genotypes were conducted. p values for mutant genotype analyses were all >0.05, indicating no significant correlation between these gene polymorphisms and glioma risk. CONCLUSION: RAN and RANBP2 gene polymorphisms were not found to be statistically significantly associated with glioma susceptibility in Chinese children. Other potential functional gene polymorphism loci of RAN and RANBP2 will need to be evaluated in the search for novel glioma biomarkers.


Subject(s)
Brain Neoplasms , Genetic Predisposition to Disease , Glioma , Molecular Chaperones , Nuclear Pore Complex Proteins , ran GTP-Binding Protein , Adolescent , Child , Child, Preschool , Female , Humans , Male , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Case-Control Studies , China/epidemiology , East Asian People/genetics , Genotype , Glioma/genetics , Glioma/pathology , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/genetics , Polymorphism, Single Nucleotide , ran GTP-Binding Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL