Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Publication year range
1.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29706548

ABSTRACT

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Genome , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Line , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosomes/metabolism , DNA-Binding Proteins , Humans , Mice , Mutagenesis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Cohesins
2.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37419111

ABSTRACT

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Subject(s)
Cell Nucleus , Genome , Genome/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism
3.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686651

ABSTRACT

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Subject(s)
Chromatin/chemistry , Genome, Human , Repressor Proteins/metabolism , Transcription, Genetic , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , DNA Packaging , Humans , RNA Polymerase II/metabolism , Salamandridae , Cohesins
4.
Cell ; 159(7): 1524-37, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25483777

ABSTRACT

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.


Subject(s)
B-Lymphocytes/metabolism , Carcinogenesis , Cytidine Deaminase/genetics , Enhancer Elements, Genetic , Animals , DNA Damage , Humans , Lymphoma/metabolism , Mice
5.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24360274

ABSTRACT

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Subject(s)
B-Lymphocytes/metabolism , Embryonic Stem Cells/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Promoter Regions, Genetic , Regulon , Animals , Cell Lineage , Cells, Cultured , CpG Islands , DNA Methylation , Genetic Techniques , Mice , Organ Specificity , RNA, Long Noncoding/genetics , Transcription Factors/metabolism , Transcription, Genetic
7.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265404

ABSTRACT

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription, Genetic , Cell Line, Tumor , Chromatin Immunoprecipitation , Enhancer Elements, Genetic , Genome-Wide Association Study , Humans
8.
Nature ; 566(7745): 558-562, 2019 02.
Article in English | MEDLINE | ID: mdl-30778195

ABSTRACT

The genomes of multicellular organisms are extensively folded into 3D chromosome territories within the nucleus1. Advanced 3D genome-mapping methods that combine proximity ligation and high-throughput sequencing (such as chromosome conformation capture, Hi-C)2, and chromatin immunoprecipitation techniques (such as chromatin interaction analysis by paired-end tag sequencing, ChIA-PET)3, have revealed topologically associating domains4 with frequent chromatin contacts, and have identified chromatin loops mediated by specific protein factors for insulation and regulation of transcription5-7. However, these methods rely on pairwise proximity ligation and reflect population-level views, and thus cannot reveal the detailed nature of chromatin interactions. Although single-cell Hi-C8 potentially overcomes this issue, this method may be limited by the sparsity of data that is inherent to current single-cell assays. Recent advances in microfluidics have opened opportunities for droplet-based genomic analysis9 but this approach has not yet been adapted for chromatin interaction analysis. Here we describe a strategy for multiplex chromatin-interaction analysis via droplet-based and barcode-linked sequencing, which we name ChIA-Drop. We demonstrate the robustness of ChIA-Drop in capturing complex chromatin interactions with single-molecule precision, which has not been possible using methods based on population-level pairwise contacts. By applying ChIA-Drop to Drosophila cells, we show that chromatin topological structures predominantly consist of multiplex chromatin interactions with high heterogeneity; ChIA-Drop also reveals promoter-centred multivalent interactions, which provide topological insights into transcription.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Microfluidics/methods , Sequence Analysis, DNA/methods , Single Molecule Imaging/methods , Single Molecule Imaging/standards , Animals , Binding Sites/genetics , Cell Line , Chromatin/chemistry , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Microfluidics/standards , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcription, Genetic
9.
Mol Cell ; 67(5): 837-852.e7, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28826674

ABSTRACT

Topologically associating domains (TADs), CTCF loop domains, and A/B compartments have been identified as important structural and functional components of 3D chromatin organization, yet the relationship between these features is not well understood. Using high-resolution Hi-C and HiChIP, we show that Drosophila chromatin is organized into domains we term compartmental domains that correspond precisely with A/B compartments at high resolution. We find that transcriptional state is a major predictor of Hi-C contact maps in several eukaryotes tested, including C. elegans and A. thaliana. Architectural proteins insulate compartmental domains by reducing interaction frequencies between neighboring regions in Drosophila, but CTCF loops do not play a distinct role in this organism. In mammals, compartmental domains exist alongside CTCF loop domains to form topological domains. The results suggest that compartmental domains are responsible for domain structure in all eukaryotes, with CTCF playing an important role in domain formation in mammals.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Histones/metabolism , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Computer Simulation , DNA/chemistry , DNA/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Histones/chemistry , Histones/genetics , Humans , Models, Biological , Nucleic Acid Conformation , Protein Conformation , Structure-Activity Relationship , Transcription, Genetic
10.
EMBO J ; 39(7): e103949, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32125007

ABSTRACT

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Subject(s)
Endothelial Cells/immunology , Histone Demethylases/metabolism , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , MicroRNAs/genetics , Animals , Cell Adhesion , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Histones/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Lysine/metabolism , Male , Methylation , Mice , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
11.
Cell ; 133(6): 1106-17, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18555785

ABSTRACT

Transcription factors (TFs) and their specific interactions with targets are crucial for specifying gene-expression programs. To gain insights into the transcriptional regulatory networks in embryonic stem (ES) cells, we use chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing (ChIP-seq) to map the locations of 13 sequence-specific TFs (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12). These factors are known to play different roles in ES-cell biology as components of the LIF and BMP signaling pathways, self-renewal regulators, and key reprogramming factors. Our study provides insights into the integration of the signaling pathways into the ES-cell-specific transcription circuitries. Intriguingly, we find specific genomic regions extensively targeted by different TFs. Collectively, the comprehensive mapping of TF-binding sites identifies important features of the transcriptional regulatory networks that define ES-cell identity.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Signal Transduction , Animals , Base Sequence , Binding Sites , Chromatin Immunoprecipitation , Genome , Kruppel-Like Factor 4 , Mice , Multiprotein Complexes , Transcription Factors/metabolism
12.
Genome Res ; 29(2): 223-235, 2019 02.
Article in English | MEDLINE | ID: mdl-30606742

ABSTRACT

The aberrant activities of transcription factors such as the androgen receptor (AR) underpin prostate cancer development. While the AR cis-regulation has been extensively studied in prostate cancer, information pertaining to the spatial architecture of the AR transcriptional circuitry remains limited. In this paper, we propose a novel framework to profile long-range chromatin interactions associated with AR and its collaborative transcription factor, erythroblast transformation-specific related gene (ERG), using chromatin interaction analysis by paired-end tag (ChIA-PET). We identified ERG-associated long-range chromatin interactions as a cooperative component in the AR-associated chromatin interactome, acting in concert to achieve coordinated regulation of a subset of AR target genes. Through multifaceted functional data analysis, we found that AR-ERG interaction hub regions are characterized by distinct functional signatures, including bidirectional transcription and cotranscription factor binding. In addition, cancer-associated long noncoding RNAs were found to be connected near protein-coding genes through AR-ERG looping. Finally, we found strong enrichment of prostate cancer genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) at AR-ERG co-binding sites participating in chromatin interactions and gene regulation, suggesting GWAS target genes identified from chromatin looping data provide more biologically relevant findings than using the nearest gene approach. Taken together, our results revealed an AR-ERG-centric higher-order chromatin structure that drives coordinated gene expression in prostate cancer progression and the identification of potential target genes for therapeutic intervention.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Receptors, Androgen/metabolism , Transcription, Genetic , Cell Line, Tumor , Chromatin/chemistry , Gene Regulatory Networks , Genome, Human , Humans , Male , Oncogene Proteins, Fusion/analysis , Polymorphism, Single Nucleotide , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Transcriptional Regulator ERG/metabolism , Transcriptional Regulator ERG/physiology
13.
Nucleic Acids Res ; 48(W1): W170-W176, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32442297

ABSTRACT

Structural variants (SVs) that alter DNA sequence emerge as a driving force involved in the reorganisation of DNA spatial folding, thus affecting gene transcription. In this work, we describe an improved version of our integrated web service for structural modeling of three-dimensional genome (3D-GNOME), which now incorporates all types of SVs to model changes to the reference 3D conformation of chromatin. In 3D-GNOME 2.0, the default reference 3D genome structure is generated using ChIA-PET data from the GM12878 cell line and SVs data are sourced from the population-scale catalogue of SVs identified by the 1000 Genomes Consortium. However, users may also submit their own structural data to set a customized reference genome structure, and/or a custom input list of SVs. 3D-GNOME 2.0 provides novel tools to inspect, visualize and compare 3D models for regions that differ in terms of their linear genomic sequence. Contact diagrams are displayed to compare the reference 3D structure with the one altered by SVs. In our opinion, 3D-GNOME 2.0 is a unique online tool for modeling and analyzing conformational changes to the human genome induced by SVs across populations. It can be freely accessed at https://3dgnome.cent.uw.edu.pl/.


Subject(s)
Chromatin/chemistry , Genomic Structural Variation , Models, Molecular , Software , Chromosome Inversion , Genome, Human , Humans , Models, Genetic , Molecular Conformation , Sequence Deletion
14.
BMC Immunol ; 22(1): 32, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34000990

ABSTRACT

BACKGROUND: Macrophages play prominent roles in bacteria recognition and clearance, including Borrelia burgdorferi (Bb), the Lyme disease spirochete. To elucidate mechanisms by which MyD88/TLR signaling enhances clearance of Bb by macrophages, we studied wildtype (WT) and MyD88-/- Bb-stimulated bone marrow-derived macrophages (BMDMs). RESULTS: MyD88-/- BMDMs exhibit impaired uptake of spirochetes but comparable maturation of phagosomes following internalization of spirochetes. RNA-sequencing of infected WT and MyD88-/- BMDMs identified a large cohort of differentially expressed MyD88-dependent genes associated with re-organization of actin and cytoskeleton during phagocytosis along with several MyD88-independent chemokines involved in inflammatory cell recruitment. We computationally generated networks which identified several MyD88-dependent intermediate proteins (Rhoq and Cyfip1) that are known to mediate inflammation and phagocytosis respectively. CONCLUSION: Our findings show that MyD88 signaling enhances, but is not required, for bacterial uptake or phagosomal maturation and provide mechanistic insights into how MyD88-mediated phagosomal signaling enhances Bb uptake and clearance.


Subject(s)
Borrelia burgdorferi/physiology , Inflammation/immunology , Lyme Disease/immunology , Macrophages/immunology , Phagosomes/metabolism , Actins/genetics , Animals , Cells, Cultured , Chemokines/genetics , Cytoskeleton/genetics , Female , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Sequence Analysis, RNA , Signal Transduction
15.
Bioinformatics ; 36(10): 3234-3235, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32044918

ABSTRACT

MOTIVATION: Modern genomic research is driven by next-generation sequencing experiments such as ChIP-seq and ChIA-PET that generate coverage files for transcription factor binding, as well as DHS and ATAC-seq that yield coverage files for chromatin accessibility. Such files are in a bedGraph text format or a bigWig binary format. Obtaining summary statistics in a given region is a fundamental task in analyzing protein binding intensity or chromatin accessibility. However, the existing Python package for operating on coverage files is not optimized for speed. RESULTS: We developed pyBedGraph, a Python package to quickly obtain summary statistics for a given interval in a bedGraph or a bigWig file. When tested on 12 ChIP-seq, ATAC-seq, RNA-seq and ChIA-PET datasets, pyBedGraph is on average 260 times faster than the existing program pyBigWig. On average, pyBedGraph can look up the exact mean signal of 1 million regions in ∼0.26 s and can compute their approximate means in <0.12 s on a conventional laptop. AVAILABILITY AND IMPLEMENTATION: pyBedGraph is publicly available at https://github.com/TheJacksonLaboratory/pyBedGraph under the MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Software , Chromatin , Genome , High-Throughput Nucleotide Sequencing
16.
Methods ; 170: 69-74, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31629084

ABSTRACT

The three-dimensional architecture of chromatin in the nucleus is important for genome regulation and function. Advanced high-throughput sequencing-based methods have been developed for capturing chromatin interactions (Hi-C, genome-wide chromosome conformation capture) or enriching for those involving a specific protein (ChIA-PET, chromatin interaction analysis with paired-end tag sequencing). There is widespread interest in utilizing and interpreting ChIA-PET and Hi-C. We review methods for comparative ChIA-PET and Hi-C data analysis and visualization. The topics reviewed include: downloading ChIA-PET and Hi-C data from the ENCODE and 4DN portals; processing ChIA-PET data using ChIA-PIPE; processing Hi-C data using Juicer or distiller and cooler; viewing 2D contact maps using Juicebox or Higlass; viewing peaks, loops, and domains using BASIC Browser; annotating convergent and tandem CTCF loops.


Subject(s)
Chromatin Immunoprecipitation/methods , Data Analysis , Genomics/methods , Cell Line , Chromatin/genetics , Chromatin/isolation & purification , Datasets as Topic , Humans , Sequence Analysis, DNA , Software
17.
Nature ; 520(7548): 558-62, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25686607

ABSTRACT

Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a 'guardian' transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.


Subject(s)
Arthritis, Rheumatoid/genetics , Enhancer Elements, Genetic/genetics , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Janus Kinase 3/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Piperidines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RNA, Untranslated/genetics , T-Lymphocytes, Helper-Inducer/immunology , Transcription, Genetic/genetics , p300-CBP Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 114(46): 12111-12119, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29078395

ABSTRACT

Cytokines critically control immune responses, but how regulatory programs are altered to allow T cells to differentially respond to distinct cytokine stimuli remains poorly understood. Here, we have globally analyzed enhancer elements bound by IL-2-activated STAT5 and IL-21-activated STAT3 in T cells and identified Il2ra as the top-ranked gene regulated by an IL-2-activated STAT5-bound superenhancer and one of the top genes regulated by STAT3-bound superenhancers. Moreover, we found that STAT5 binding was rapidly superenriched at genes highly induced by IL-2 and that IL-2-activated STAT5 binding induces new and augmented chromatin interactions within superenhancer-containing genes. Based on chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing data, we used CRISPR-Cas9 gene editing to target three of the STAT5 binding sites within the Il2ra superenhancer in mice. Each mutation decreased STAT5 binding and altered IL-2-induced Il2ra gene expression, revealing that individual elements within the superenhancer were not functionally redundant and that all were required for normal gene expression. Thus, we demonstrate cooperative utilization of superenhancer elements to optimize gene expression and show that STAT5 mediates IL-2-induced chromatin looping at superenhancers to preferentially regulate highly inducible genes, thereby providing new insights into the mechanisms underlying cytokine-dependent superenhancer function.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Enhancer Elements, Genetic , Interleukin-2/genetics , Receptors, Interleukin-2/immunology , STAT5 Transcription Factor/immunology , Animals , Binding Sites , CD8-Positive T-Lymphocytes/cytology , CRISPR-Cas Systems , Chromatin/chemistry , Chromatin/immunology , Gene Editing , Gene Expression Regulation , Genes, Reporter , Genetic Loci , Humans , Interleukin-2/immunology , Interleukins/genetics , Interleukins/immunology , Luciferases/genetics , Luciferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Protein Binding , Receptors, Interleukin-2/genetics , STAT5 Transcription Factor/genetics , Signal Transduction , Transcription, Genetic
19.
Genome Res ; 26(12): 1697-1709, 2016 12.
Article in English | MEDLINE | ID: mdl-27789526

ABSTRACT

ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.


Subject(s)
Chromatin/genetics , Chromosomes, Human/genetics , Computational Biology/methods , Imaging, Three-Dimensional/methods , B-Lymphocytes/cytology , Cells, Cultured , Chromosomes , Computer Simulation , Gene Expression Regulation , Humans , Information Storage and Retrieval , Models, Genetic
20.
Nature ; 504(7479): 306-310, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24213634

ABSTRACT

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , Animals , Cell Line , Cell Lineage , Embryonic Stem Cells/metabolism , In Situ Hybridization, Fluorescence , Mice , Neural Stem Cells/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic/genetics , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL