Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pathol ; 262(4): 391-394, 2024 04.
Article in English | MEDLINE | ID: mdl-38332742

ABSTRACT

Prostate cancer is one of the most prevalent and, upon metastasis, deadliest cancers in men. Timely identification is essential for effective treatment. Furthermore, accurate determination of prostatic origin is crucial for personalized therapy once the cancer has spread. However, current prostate cancer screening methods are lacking. A recent article in The Journal of Pathology addresses this issue by utilizing an improved antibody to reevaluate HOXB13 as a lineage marker for prostate cancer. The study's findings support the concept that, despite decreased expression in advanced prostate cancer, HOXB13 remains highly suitable for determining prostatic origin due to its androgen receptor independence, high specificity, and sensitivity. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostate-Specific Antigen/metabolism , Early Detection of Cancer , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prostate/pathology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immunoglobulins
2.
Diagn Pathol ; 19(1): 83, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907236

ABSTRACT

BACKGROUND: Catenin (Cadherin-Associated Protein), Beta 1 (CTNNB1) genomic alterations are rare in prostate cancer (PCa). Gain-of-function mutations lead to overexpression of ß-catenin, with consequent hyperactivation of the Wnt/ß-catenin signaling pathway, implicated in PCa progression and treatment resistance. To date, successful targeted treatment options for Wnt/ß-catenin - driven PCa are lacking. METHODS: We report a rare histologic transformation of a CTNNB1 (ß-catenin) mutated metastatic castration resistant prostate cancer (mCRPC), clinically characterized by highly aggressive disease course. We histologically and molecularly characterized the liver metastatic tumor samples, as well as successfully generated patient-derived organoids (PDOs) and patient-derived xenograft (PDX) from a liver metastasis. We used the generated cell models for further molecular characterization and drug response assays. RESULTS: Immunohistochemistry of liver metastatic biopsies and PDX tumor showed lack of expression of typical PCa (e.g., AR, PSA, PSAP, ERG) or neuroendocrine markers (synaptophysin), compatible with double-negative CRPC, but was positive for nuclear ß-catenin expression, keratin 7 and 34ßE12. ERG rearrangement was confirmed by fluorescent in situ hybridization (FISH). Drug response assays confirmed, in line with the clinical disease course, lack of sensitivity to common drugs used in mCRPC (e.g., enzalutamide, docetaxel). The casein kinase 1 (CK1) inhibitor IC261 and the tankyrase 1/2 inhibitor G700-LK showed modest activity. Moreover, despite harbouring a CTNNB1 mutation, PDOs were largely insensitive to SMARCA2/4- targeting PROTAC degraders and inhibitor. CONCLUSIONS: The reported CTNNB1-mutated mCRPC case highlights the potential challenges of double-negative CRPC diagnosis and underlines the relevance of further translational research to enable successful targeted treatment of rare molecular subtypes of mCRPC.


Subject(s)
Mutation , beta Catenin , Humans , Male , beta Catenin/genetics , beta Catenin/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Aged , Disease Progression
3.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201475

ABSTRACT

Most men with prostate cancer (PCa), despite potentially curable localized disease at initial diagnosis, progress to metastatic disease. Despite numerous treatment options, choosing the optimal treatment for individual patients remains challenging. Biomarkers guiding treatment sequences in an advanced setting are lacking. To estimate the diagnostic potential of liquid biopsies in guiding personalized treatment of PCa, we evaluated the utility of a custom-targeted next-generation sequencing (NGS) panel based on the AmpliSeq HD Technology. Ultra-deep sequencing on plasma circulating free DNA (cfDNA) samples of 40 metastatic castration-resistant PCa (mCRPC) and 28 metastatic hormone-naive PCa (mCSPC) was performed. CfDNA somatic mutations were detected in 48/68 (71%) patients. Of those 68 patients, 42 had matched tumor and cfDNA samples. In 21/42 (50%) patients, mutations from the primary tumor tissue were detected in the plasma cfDNA. In 7/42 (17%) patients, mutations found in the primary tumor were not detected in the cfDNA. Mutations from primary tumors were detected in all tested mCRPC patients (17/17), but only in 4/11 with mCSPC. AR amplifications were detected in 12/39 (31%) mCRPC patients. These results indicate that our targeted NGS approach has high sensitivity and specificity for detecting clinically relevant mutations in PCa.

SELECTION OF CITATIONS
SEARCH DETAIL