Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
J Am Chem Soc ; 146(20): 14297-14306, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722613

ABSTRACT

The triplet excited states of sulfur dioxide can be accessed in the UV region and have a lifetime large enough that they can react with atmospheric trace gases. In this work, we report high level ab initio calculations for the reaction of the a3B1 and b3A2 excited states of SO2 with weak and strong acidic species such as HCOOH and HNO3, aimed to extend the chemistry reported in previous studies with nonacidic H atoms (water and alkanes). The reactions investigated in this work are very versatile and follow different kinds of mechanisms, namely, proton-coupled electron transfer (pcet) and conventional hydrogen atom transfer (hat) mechanisms. The study provides new insights into a general and very important class of excited-state-promoted reactions, opening up interesting chemical perspectives for technological applications of photoinduced H-transfer reactions. It also reveals that atmospheric triplet chemistry is more significant than previously thought.

2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290148

ABSTRACT

Recently, experimental and theoretical works have reported evidence indicating that photochemical processes may significantly be accelerated at heterogeneous interfaces, although a complete understanding of the phenomenon is still lacking. We have carried out a theoretical study of interface and surface effects on the photochemistry of hydrogen peroxide (H2O2) using high-level ab initio methods and a variety of models. Hydrogen peroxide is an important oxidant that decomposes in the presence of light, forming two OH radicals. This elementary photochemical process has broad interest and is used in many practical applications. Our calculations show that it can drastically be affected by heterogeneous interfaces. Thus, compared to gas phase, the photochemistry of H2O2 appears to be slowed on the surface of apolar or low-polar surfaces and, in contrast, hugely accelerated on ionic surfaces or the surface of aqueous electrolytes. We give particular attention to the case of the neat air-water interface. The calculated photolysis rate is similar to the gas phase, which stems from the compensation of two opposite effects, the blue shift of the n→σ* absorption band and the increase of the absorption intensity. Nevertheless, due to the high affinity of H2O2 for the air-water interface, the predicted OH production rate is up to five to six orders of magnitude larger. Overall, our results show that the photochemistry of H2O2 in heterogeneous environments is greatly modulated by the nature of the surface, and this finding opens interesting new perspectives for technological and biomedical applications, and possibly in various atmospheres.

3.
J Am Chem Soc ; 145(2): 1400-1406, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36622259

ABSTRACT

It has been recently discovered that chemical reactions at aqueous interfaces can be orders of magnitude faster compared to conventional bulk phase reactions, but despite its wide-ranging implications, which extend from atmospheric to synthetic chemistry or technological applications, the phenomenon is still incompletely understood. The role of strong electric fields due to space asymmetry and the accumulation of ions at the interface has been claimed as a possible cause from some experiments, but the reorganization of the solvent around the reactive system should provide even greater additional electrostatic contributions that have not yet been analyzed. In this study, with the help of first-principles molecular dynamics simulations, we go deeper into this issue by a careful assessment of solvation electrostatics at the air-water interface. Our simulations confirm that electrostatic forces can indeed be a key factor in rate acceleration compared to bulk solution. Remarkably, the study reveals that the effect cannot simply be attributed to the magnitude of the local electric field and that the fluctuations of the full electrostatic potential resulting from unique dynamical behavior of the solvation shells at the interface must be accounted for. This finding paves the way for future applications of the phenomenon in organic synthesis, especially for charge transfer or redox reactions in thin films and microdroplets.


Subject(s)
Molecular Dynamics Simulation , Water , Water/chemistry , Static Electricity , Ions/chemistry , Solvents
4.
Chemphyschem ; 24(15): e202300176, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37382192

ABSTRACT

In this perspective, we briefly present the historical context in which, fifty years ago, dielectric continuum models were developed to incorporate solvent effects into quantum mechanical calculations. Since the first self-consistent-field equations including the solvent electrostatic potential (or reaction field) were reported in 1973, continuum models have become extremely popular in the computational chemistry community and are routinely used in a very wide range of applications.

5.
J Am Chem Soc ; 144(48): 22302-22308, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36418024

ABSTRACT

The multiphase oxidation of SO2 to sulfate in aerosol particles is a key process in atmospheric chemistry. However, there is a large gap between the observed and simulated sulfate concentrations during severe haze events. To fill in the gaps in understanding SO2 oxidation chemistry, a combination of experiments and theoretical calculations provided evidence for the direct, spin-forbidden excitation of SO2 to its triplet states using UVA photons at an air-water interface, followed by reactions with water and O2 that facilitate the rapid formation of sulfate. The estimated reaction energy for the whole process, 3SO2 + H2O + 1/2O2 → HSO4- + H+ (298 K, 1 M), was ΔGr = -107.8 kcal·mol-1. Moreover, calculations revealed that this was a multistep reaction involving submerged, small energy barriers (∼10 kcal·mol-1). These results indicate that photochemical oxidation of SO2 at the air-water interface with solar actinic light may be an important unaccounted source of sulfate aerosols under polluted haze conditions.

6.
J Chem Inf Model ; 62(24): 6775-6787, 2022 12 26.
Article in English | MEDLINE | ID: mdl-35980989

ABSTRACT

Phosphoinositide 3-kinase (PI3K) enzymes are important drug targets, especially in oncology, and several inhibitors are currently under investigation in clinical trials for the treatment of lymphocytic leukemia, follicular lymphoma, breast, thyroid, colorectal, and lung cancer. Targeted covalent inhibitors hold significant promise for drug discovery research especially for kinases. Targeting the lysine residues attracts attention as a new strategy in designing targeted covalent inhibitors, since the lysine residue provides several advantages over the traditional cysteine residue. Recently, new highly selective covalent inhibitors of PI3Kδ with activated ester warheads, targeting the conserved Lys779 residue, were reported. Based on the observed kinetics, a covalent inhibition mechanism was proposed, but the atomistic details of the reaction are still not understood. Therefore, in the present work, we have conducted quantum chemical ONIOM M06-2X/6-31+G(d,p):PM6 calculations on the active site cluster structure of PI3Kδ to elucidate the microscopic details of the mechanism of the aminolysis reaction between Lys779 and the ester inhibitors. Our calculations clearly discriminate the noncovalent methyl ester inhibitor and the covalent inhibitors with activated phenolic esters. For the representative p-NO2, p-F, p-H, and p-OCH3 phenolic esters, the Gibbs free energy profiles of alternative mechanistic paths through either Asp782 or Asp911 demonstrate the modulatory role of active site aspartate residues. The most plausible path alters depending on the electron-withdrawing/donating nature of the p-substituted phenolate leaving group. Inhibitors with sufficiently strong electron-withdrawing group prefer direct dissociation of the leaving group from the tetrahedral zwitterion intermediate, while the ones with electron-donating group favor the formation of a neutral tetrahedral intermediate prior to the dissociation. The relative Gibbs free energy barriers of p-NO2 < p-F < p-H < p-OCH3 substituted phenyl esters display the same qualitative trend as the experimentally measured kinact/KI values. Our results provide in depth insight into the mechanism, which can pave the way for optimizing the inhibitor efficiency.


Subject(s)
Lysine , Phosphatidylinositol 3-Kinases , Nitrogen Dioxide , Drug Discovery
7.
Phys Chem Chem Phys ; 24(48): 29700-29704, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36453476

ABSTRACT

We have investigated the origin of the unexpected, recently discovered phenomenon of reaction rate acceleration in water microdroplets relative to bulk water. Acceleration factors for reactions of atmospheric and synthetic relevance can be dissected into elementary contributions thanks to the original and versatile kinetic model. The microdroplet is partitioned in two sub-volumes, the surface and the interior, operating as interconnected chemical reactors in the fast diffusion regime. Reaction rate acceleration and its dependence on reaction molecularity and microdroplet dimensions are explained by applying transition-state-theory at thermodynamic equilibrium. We also show that our model, in combination with experimental measurements of rate acceleration factors, can be used to obtain chemical kinetics data at the air-water interface, which has been a long-standing challenge for chemists.

8.
J Am Chem Soc ; 143(1): 453-462, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33355444

ABSTRACT

Recent experiments and theoretical calculations have shown that HNO3 may exist in molecular form in aqueous environments, where in principle one would expect this strong acid to be completely dissociated. Much effort has been devoted to understanding this fact, which has huge environmental relevance since nitric acid is a component of acid rain and also contributes to renoxification processes in the atmosphere. Although the importance of heterogeneous processes such as oxidation and photolysis have been evidenced by experiments, most theoretical studies on hydrated molecular HNO3 have focused on the acid dissociation mechanism. In the present work, we carry out calculations at various levels of theory to obtain insight into the properties of molecular nitric acid at the surface of liquid water (the air-water interface). Through multi-nanosecond combined quantum-classical molecular dynamics simulations, we analyze the interface affinity of nitric acid and provide an order of magnitude for its lifetime with regard to acid dissociation, which is close to the value deduced using thermodynamic data in the literature (∼0.3 ns). Moreover, we study the electronic absorption spectrum and calculate the rate constant for the photolytic process HNO3 + hν → NO2 + OH, leading to 2 × 10-6 s-1, about twice the value in the gas phase. Finally, we describe the reaction HNO3 + OH → NO3 + H2O using a cluster model containing 21 water molecules with the help of high-level ab initio calculations. A large number of reaction paths are explored, and our study leads to the conclusion that the most favorable mechanism involves the formation of a pre-reactive complex (HNO3)(OH) from which product are obtained through a coupled proton-electron transfer mechanism that has a free-energy barrier of 6.65 kcal·mol-1. Kinetic calculations predict a rate constant increase by ∼4 orders of magnitude relative to the gas phase, and we conclude that at the air-water interface, a lower limit for the rate constant is k = 1.2 × 10-9 cm3·molecule-1·s-1. The atmospheric significance of all these results is discussed.

9.
Org Biomol Chem ; 19(45): 9996-10004, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34755747

ABSTRACT

Development of targeted covalent inhibitors in drug design has a broad and important interest and many efforts are currently being made in this direction. Targeted covalent inhibitors have special relevance in oncology due to the possibilities they offer to overcome the problems of acquired resistance. In recent experiments, lysine-targeting has been envisaged for the irreversible inhibition of the heterodimeric lipid kinase phosphoinositide 3-kinase delta (PI3Kδ). Activated esters have been evaluated and shown to be promising inhibitors of this enzyme, but the reaction mechanisms display specificities that are not yet fully understood. In the present work, we have carried out a theoretical study of the aminolysis reaction of model esters in aqueous solution to gain insights into the corresponding biological processes. We have found that phenolic esters bearing electron-withdrawing groups are particularly reactive. The predicted mechanism involves the formation of a tetrahedral zwitterionic intermediate, which dissociates into an alkoxide and a protonated amide, this charge separation being the driving force for the subsequent proton transfer and final product formation. Structure-reactivity relationships are reported and shown to be a useful tool for evaluating potential inhibitor candidates.

10.
J Am Chem Soc ; 142(50): 20937-20941, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33274934

ABSTRACT

The heterogeneous reaction of NO2 with water on diverse surfaces is broadly considered as a possible source of atmospheric HONO in dark conditions, but the associated mechanisms are not fully understood. We report data from first-principles simulations showing that the lifetime of the putative reactive NO2 dimer on the surface of pure water droplets is too small to host the whole process. One infers from our results that the hydrolysis of NO2 in clouds must be catalyzed by organic or inorganic species adsorbed on the droplets.

11.
J Am Chem Soc ; 142(38): 16140-16155, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32833454

ABSTRACT

Chemistry on water is a fascinating area of research. The surface of water and the interfaces between water and air or hydrophobic media represent asymmetric environments with unique properties that lead to unexpected solvation effects on chemical and photochemical processes. Indeed, the features of interfacial reactions differ, often drastically, from those of bulk-phase reactions. In this Perspective, we focus on photoinduced oxidation reactions, which have attracted enormous interest in recent years because of their implications in many areas of chemistry, including atmospheric and environmental chemistry, biology, electrochemistry, and solar energy conversion. We have chosen a few representative examples of photoinduced oxidation reactions to focus on in this Perspective. Although most of these examples are taken from the field of atmospheric chemistry, they were selected because of their broad relevance to other areas. First, we outline a series of processes whose photochemistry generates hydroxyl radicals. These OH precursors include reactive oxygen species, reactive nitrogen species, and sulfur dioxide. Second, we discuss processes involving the photooxidation of organic species, either directly or via photosensitization. The photochemistry of pyruvic acid and fatty acid, two examples that demonstrate the complexity and versatility of this kind of chemistry, is described. Finally, we discuss the physicochemical factors that can be invoked to explain the kinetics and thermodynamics of photoinduced oxidation reactions at aqueous interfaces and analyze a number of challenges that need to be addressed in future studies.

12.
Chemphyschem ; 21(20): 2263-2271, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32812700

ABSTRACT

Isoprene is the most abundant volatile organic compound in the atmosphere after methane. While gas-phase processes have been widely studied, the chemistry of isoprene in aqueous environments is less well known. Nevertheless, some experiments have reported unexpected reactivity at the air-water interface. In this work, we have carried out combined quantum-classical molecular dynamics simulations of isoprene at the air-water interface, as well as ab initio and density functional theory calculations on isoprene-water complexes. We report the first calculation of the thermodynamics of adsorption of isoprene at the water surface, examine how hydration influences its electronic properties and reactivity indices, and estimate the OH-initiated oxidation rate. Our study indicates that isoprene interacts with the water surface mainly through H-π bonding. This primary interaction mode produces strong fluctuations of the π and π* bond stabilities, and therefore of isoprene's chemical potential, nucleophilicity and ionization potential, anticipating significant dynamical effects on its reactivity at the air-water interface. Using data from the literature and free energies reported in our work, we have estimated the rate of the OH-initiated oxidation process at the air-water interface (5.0×1012  molecule cm-3 s-1 ) to be about 7 orders of magnitude larger than the corresponding rate in the gas phase (8.2×105  molecule cm-3 s-1 ). Atmospheric implications of this result are discussed.

13.
J Phys Chem A ; 124(27): 5675-5683, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32520558

ABSTRACT

We report a cost-effective molecular dynamics approach to calculate sum-frequency generation (SFG) vibrational spectra of molecular species at liquid interfaces in the energy representation formalism that brings together the instantaneous normal mode (INM) analysis at free-energy minima (FEM) and the dual-level free-energy perturbation (FEP) methods. This combined FEP-INM-FEM approach allows analyzing SFG spectra in terms of normal mode contributions at very-high ab initio levels, in contrast to standard time-correlation function (TCF)-based methods, from which it can be considered complementary. It is applied here to the study of the CH3-stretching band of methanol at the air-water interface, which has been thoroughly studied in the literature. The SFG band of acetonitrile in the same conditions has also been calculated with the aim of testing the capability of the method to reproduce small chemical shifts. The suitability of the proposed model is demonstrated by comparing the results with TCF data from QM/MM simulations and with experiments. Analysis of these results provides new insights into the strength and orientational dependence of the SFG signal of symmetric and asymmetric stretching vibrations of CH3 groups, which can be of paramount importance to analyze the spectra of more complex systems.

14.
J Am Chem Soc ; 141(42): 16564-16568, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31589817

ABSTRACT

The photochemistry of SO2 at the air-water interface of water droplets leads to the formation of HOSO radicals. Using first-principles simulations, we show that HOSO displays an unforeseen strong acidity (pKa = -1) comparable with that of nitric acid and is fully dissociated at the air-water interface. Accordingly, this radical might play an important role in acid rain formation. Potential implications are discussed.

15.
Chemistry ; 25(61): 13899-13904, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31241211

ABSTRACT

The atmospheric role of photochemical processes involving NO2 beyond its dissociation limit (398 nm) is controversial. Recent experiments have confirmed that excited NO2 * beyond 420 nm reacts with water according to NO2 * +H2 O→HONO+OH. However, the estimated kinetic constant for this process in the gas phase is quite small (k≈10-15 -3.4×10-14  cm3 molecule-1 s-1 ) suggesting minor atmospheric implications of the formed radicals. In this work, ab initio molecular dynamics simulations of NO2 adsorbed at the air-water interface reveal that the OH production rate increases by about 2 orders of magnitude with respect to gas phase, attaining ozone reference values for NO2 concentrations corresponding to slightly polluted rural areas. This finding substantiates the argument that chemistry on clouds can be an additional source of OH radicals in the troposphere and suggests directions for future laboratory experimental studies.

16.
Phys Chem Chem Phys ; 21(19): 9779-9784, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31025661

ABSTRACT

The SO2 + H2O reaction is proposed to be the starting process for the oxidation of sulfur dioxide to sulfate in liquid water, although the thermal reaction displays a high activation barrier. Recent studies have suggested that the reaction can be promoted by light absorption in the near UV. We report ab initio calculations showing that the SO2 excited triplet state is unstable in water, as it immediately reacts with H2O through a water-assisted proton coupled electron transfer mechanism forming OH and HOSO radicals. The work provides new insights for a general class of excited-state promoted reactions of related YXY compounds with water, where Y is a chalcogen atom and X is either an atom or a functional group, which opens up interesting chemical perspectives in technological applications of photoinduced H-transfer.

17.
J Chem Phys ; 151(11): 111103, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31542027

ABSTRACT

The photochemistry of HOSO in the near- and deep-UV spectral range has been studied in the gas phase using the multireference configuration interaction MRCI+Q/aug-cc-pV(T+d)Z level of theory. HOSO is found to be a nonplanar radical in its ground electronic state with a torsion angle calculated to be 49.7°. The lowest three doublet electronic states are characterized by a large transition dipole moment and are implicated in the photodissociation of HOSO in the gas phase to generate SO and OH as products. Sulfur dioxide and hydrogen products may also result after UV absorption to reach the first excited state, and this channel competes with the production of OH and SO.

18.
J Am Chem Soc ; 140(39): 12341-12344, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30226769

ABSTRACT

The photochemistry of sulfur dioxide in the near UV-vis energy range has been studied in aqueous environments. The combination of previously reported experimental measurements with accurate quantum chemical calculations achieved in this work reveals that the process represents an important source of OH radicals in the troposphere. It implicates the reaction of the lowest triplet excited state of SO2 with a water molecule. When the process occurs in the gas-phase, photochemical OH production is only significant under high humidity conditions and high SO2 concentrations as those measured in polluted urban areas. However, the OH production rate increases by several orders of magnitude when the process takes place at the surface of water droplets. The present study indicates therefore that the atmospheric importance of sulfur dioxide goes beyond its well-known role as acid rain and aerosol formation precursor.

19.
J Phys Chem A ; 122(6): 1764-1770, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29346729

ABSTRACT

Iminophosphoranes or phosphazenes are an important class of compounds with increasing use in synthetic organic chemistry as neutral organic superbases exhibiting low nucleophilicity. Their electronic structure and therefore their properties strongly depend on substitution, but there have been very few theoretical studies devoted to this topic, and more specifically to the formation of electron donor-acceptor complexes of iminophosphoranes with electrophiles. In this work, we have investigated the interaction with carbon dioxide at different ab initio levels. Carbon dioxide usually behaves as a Lewis acid and the reaction with iminiphosphoranes has been described as a nonconventional aza-Wittig process leading to isocyanates. The reaction can be conducted in supercritical CO2 conditions (carbon dioxide acts as both solvent and reactant), which is a promising strategy in the context of green chemistry. Our calculations have been carried out at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level for model systems and at the M06-2X/6-611+G(d,p) level for a larger species used in experiments. The electronic interactions and the interaction energies are analyzed and discussed in detail using the natural bond orbital method. Proton affinities and gas-phase basicities are provided as well.

20.
J Comput Chem ; 38(10): 659-668, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28093779

ABSTRACT

We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid-vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall-clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL