Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36084634

ABSTRACT

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Subject(s)
Ciliopathies , Orofaciodigital Syndromes , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Hedgehog Proteins/metabolism , Humans , Introns/genetics , Mutation/genetics , Orofaciodigital Syndromes/genetics , RNA Splicing/genetics , RNA Splicing Factors/metabolism , RNA, Small Interfering/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism
2.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38531627

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Subject(s)
Ellis-Van Creveld Syndrome , Pedigree , Phenotype , Humans , Ellis-Van Creveld Syndrome/genetics , Ellis-Van Creveld Syndrome/pathology , Male , Female , Child , Membrane Proteins/genetics , Mutation , Child, Preschool , Zinc Finger Protein Gli3/genetics , Adolescent , Adult , Nerve Tissue Proteins/genetics , Cohort Studies , Infant , Proteins/genetics , Retrospective Studies , Intercellular Signaling Peptides and Proteins
3.
J Med Genet ; 60(8): 791-796, 2023 08.
Article in English | MEDLINE | ID: mdl-36581449

ABSTRACT

BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Humans , Phenotype , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Developmental Disabilities/genetics
4.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33058759

ABSTRACT

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Subject(s)
Abnormalities, Multiple/genetics , Cognitive Dysfunction/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Fingers/abnormalities , Germ-Line Mutation , Heart Septal Defects/genetics , Polydactyly/genetics , Toes/abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Adolescent , Adult , Animals , Base Sequence , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/pathology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/deficiency , Female , Fingers/pathology , Gene Expression Regulation, Developmental , Heart Septal Defects/diagnosis , Heart Septal Defects/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Holoenzymes/chemistry , Holoenzymes/deficiency , Holoenzymes/genetics , Humans , Infant, Newborn , Male , Mice , Models, Molecular , Mosaicism , NIH 3T3 Cells , Pedigree , Polydactyly/diagnosis , Polydactyly/pathology , Protein Structure, Secondary , Toes/pathology
5.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33053334

ABSTRACT

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Subject(s)
Bone and Bones/metabolism , Collagen Type I/metabolism , HSP47 Heat-Shock Proteins/metabolism , Osteogenesis Imperfecta/genetics , Vesicular Transport Proteins/metabolism , Adult , Alleles , Amino Acid Sequence , Animals , Binding Sites , Bone and Bones/pathology , Chickens , Child, Preschool , Collagen Type I/chemistry , Collagen Type I/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/genetics , Humans , Infant , Male , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology , Pedigree , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Protein Transport , Sequence Alignment , Sequence Homology, Amino Acid , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
6.
FASEB J ; 36(4): e22258, 2022 04.
Article in English | MEDLINE | ID: mdl-35334131

ABSTRACT

Chondrocytes in osteoarthritic (OA) cartilage acquire a hypertrophic-like phenotype, where Hedgehog (Hh) signaling is pivotal. Hh overexpression causes OA-like cartilage lesions, whereas its downregulation prevents articular destruction in mouse models. Mutations in EVC and EVC2 genes disrupt Hh signaling, and are responsible for the Ellis-van Creveld syndrome skeletal dysplasia. Since Ellis-van Creveld syndrome protein (Evc) deletion is expected to hamper Hh target gene expression we hypothesized that it would also prevent OA progression avoiding chondrocyte hypertrophy. Our aim was to study Evc as a new therapeutic target in OA, and whether Evc deletion restrains chondrocyte hypertrophy and prevents joint damage in an Evc tamoxifen induced knockout (EvccKO ) model of OA. For this purpose, OA was induced by surgical knee destabilization in wild-type (WT) and EvccKO adult mice, and healthy WT mice were used as controls (n = 10 knees/group). Hypertrophic markers and Hh genes were measured by qRT-PCR, and metalloproteinases (MMP) levels assessed by western blot. Human OA chondrocytes and cartilage samples were obtained from patients undergoing knee joint replacement surgery. Cyclopamine (CPA) was used for Hh pharmacological inhibition and IL-1 beta as an inflammatory insult. Our results showed that tamoxifen induced inactivation of Evc inhibited Hh overexpression and partially prevented chondrocyte hypertrophy during OA, although it did not ameliorate cartilage damage in DMM-EvccKO mice. Hh pathway inhibition did not modify the expression of proinflammatory mediators induced by IL-1 beta in human OA chondrocytes in culture. We found that hypertrophic-IHH-and inflammatory-COX-2-markers co-localized in OA cartilage samples. We concluded that tamoxifen induced inactivation of Evc partially prevented chondrocyte hypertrophy in DMM-EvccKO mice, but it did not ameliorate cartilage damage. Overall, our results suggest that chondrocyte hypertrophy per se is not a pathogenic event in the progression of OA.


Subject(s)
Cartilage, Articular , Chondrocytes , Osteoarthritis , Animals , Cartilage, Articular/pathology , Chondrocytes/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Hypertrophy/pathology , Interleukin-1beta/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Osteoarthritis/metabolism , Tamoxifen/pharmacology
7.
Am J Med Genet A ; 191(1): 100-107, 2023 01.
Article in English | MEDLINE | ID: mdl-36308343

ABSTRACT

We present a large, ten-generation family of 273 individuals with 84 people having preaxial polydactyly/triphalangeal thumb due to a pathogenic variant in the zone of polarizing activity regulatory sequence (ZRS) within the exon 5 of LMBR1. The causative change maps to position 396 of the ZRS, located at position c.423 + 4909C > T (chr7:156791480; hg38; LMBR1 ENST00000353442.10; rs606231153 NG_009240.2) in the intron 5 of LMBR1. The first affected individual with the disorder was traced back to mid-1700, when some settlers and workers established in Cervera de Buitrago, a small village about 82 km North to Madrid. Clinical and radiological studies of most of the affected members have been performed for 42 years (follow-up of the family by LFGA). Molecular studies have confirmed a pathogenic variant in the ZRS that segregates in this family. To the best of our knowledge, this is the largest family with preaxial polydactyly/triphalangeal thumb reported so far.


Subject(s)
Membrane Proteins , Polydactyly , Humans , Membrane Proteins/genetics , Pedigree , Polydactyly/genetics , Polydactyly/pathology , Thumb/pathology
8.
Genet Med ; 24(12): 2475-2486, 2022 12.
Article in English | MEDLINE | ID: mdl-36197437

ABSTRACT

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Subject(s)
Autism Spectrum Disorder , Ectodermal Dysplasia , Neurodevelopmental Disorders , Humans , Scalp/abnormalities , Scalp/metabolism , Autism Spectrum Disorder/genetics , HEK293 Cells , Transcription Factor AP-1/genetics , Exons/genetics , Ectodermal Dysplasia/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger , Fos-Related Antigen-2/genetics
9.
Am J Med Genet C Semin Med Genet ; 187(2): 186-191, 2021 06.
Article in English | MEDLINE | ID: mdl-33998134

ABSTRACT

In this article, we analyze several works of art which portray individuals with short stature ("dwarfism"). We have focused on eight individuals who we believe have short stature due to growth hormone deficiency (GHD) or closely related disorders, rather than skeletal dysplasia. We discuss them individually, suggest the potential diagnosis, review the characteristics of their life and personal history, and briefly outline the artistic framework in which these works of art were created. This work is a posthumous tribute to the people with short stature portrayed in these works of art, who likely experienced harassment and inappropriate treatment by others and called by derogatory names. We have tried to acknowledge their identities with the respect they deserve.


Subject(s)
Dwarfism, Pituitary , Human Growth Hormone , Osteochondrodysplasias , Body Height , Growth Disorders , Humans
10.
Genet Med ; 23(4): 679-688, 2021 04.
Article in English | MEDLINE | ID: mdl-33442026

ABSTRACT

PURPOSE: This study aimed to identify the genetic cause of a new multiple congenital anomalies syndrome observed in three individuals from two unrelated families. METHODS: Clinical assessment was conducted prenatally and at different postnatal stages. Genetic studies included exome sequencing (ES) combined with single-nucleotide polymorphism (SNP) array based homozygosity mapping and trio ES. Dermal fibroblasts were used for functional assays. RESULTS: A clinically recognizable syndrome characterized by severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet was identified. Additional features included eye abnormalities, hearing impairment, and electroencephalogram anomalies. ES detected different homozygous truncating variants in MAPKAPK5 in both families. Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization. CONCLUSION: Our data indicate that loss-of-function variants in MAPKAPK5 result in a severe developmental disorder and reveal a major role of this gene in human brain, heart, and limb development.


Subject(s)
Developmental Disabilities , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Syndactyly , Child , Developmental Disabilities/genetics , Humans , Phenotype , Syndactyly/genetics
11.
Hum Mutat ; 41(12): 2087-2093, 2020 12.
Article in English | MEDLINE | ID: mdl-32906221

ABSTRACT

Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Fingers/abnormalities , Genetic Predisposition to Disease , Heart Septal Defects/genetics , Membrane Proteins/genetics , Mutation/genetics , Polydactyly/genetics , Toes/abnormalities , Adult , Animals , Child , Child, Preschool , Ellis-Van Creveld Syndrome/diagnostic imaging , Family , Female , Fingers/diagnostic imaging , Heart Septal Defects/diagnostic imaging , Humans , Male , Mice , Pedigree , Polydactyly/diagnostic imaging , Toes/diagnostic imaging
12.
Hum Mutat ; 41(1): 265-276, 2020 01.
Article in English | MEDLINE | ID: mdl-31549748

ABSTRACT

Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.


Subject(s)
Fingers/abnormalities , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Polydactyly/diagnosis , Polydactyly/genetics , Toes/abnormalities , Zinc Finger Protein GLI1/genetics , Alleles , Amino Acid Substitution , Female , Fibroblasts , Gene Expression , Genes, Dominant , Genes, Reporter , Genetic Association Studies/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
13.
Genet Med ; 22(11): 1743-1757, 2020 11.
Article in English | MEDLINE | ID: mdl-32661356

ABSTRACT

Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy-number variants, small or single-nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.


Subject(s)
DNA Copy Number Variations , Mosaicism , DNA Mutational Analysis , Humans , Mutation , Software
14.
Hum Mol Genet ; 26(23): 4556-4571, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28973407

ABSTRACT

GLI1, GLI2 and GLI3 form a family of transcription factors which regulate development by mediating the action of Hedgehog (Hh) morphogens. Accordingly, inactivating variants in GLI2 and GLI3 are found in several developmental disorders. In contrast, loss-of-function mutations in GLI1 have remained elusive, maintaining enigmatic the role of this gene in the human embryo. We describe eight patients from three independent families having biallelic truncating variants in GLI1 and developmental defects overlapping with Ellis-van Creveld syndrome (EvC), a disease caused by diminished Hh signaling. Two families had mutations in the last exon of the gene and a third family was identified with an N-terminal stop gain variant predicted to be degraded by the NMD-pathway. Analysis of fibroblasts from one of the patients with homozygous C-terminal truncation of GLI1 demonstrated that the corresponding mutant GLI1 protein is fabricated by patient cells and becomes upregulated in response to Hh signaling. However, the transcriptional activity of the truncated GLI1 factor was found to be severely impaired by cell culture and in vivo assays, indicating that the balance between GLI repressors and activators is altered in affected subjects. Consistent with this, reduced expression of the GLI target PTCH1 was observed in patient fibroblasts after chemical induction of the Hh pathway. We conclude that GLI1 inactivation is associated with a phenotypic spectrum extending from isolated postaxial polydactyly to an EvC-like condition.


Subject(s)
Ellis-Van Creveld Syndrome/genetics , Zinc Finger Protein GLI1/genetics , Child , Ellis-Van Creveld Syndrome/metabolism , Ellis-Van Creveld Syndrome/pathology , Exons , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Gene Silencing , Hedgehog Proteins/metabolism , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Polydactyly/genetics , Polydactyly/metabolism , Primary Cell Culture , Signal Transduction , Trans-Activators/genetics , Transcription, Genetic , Zinc Finger Protein GLI1/metabolism
15.
Clin Genet ; 95(6): 726-731, 2019 06.
Article in English | MEDLINE | ID: mdl-30628072

ABSTRACT

Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that either the weight, height, or head circumference are above the 97th centile or 2 to 3 SD above the mean for age and sex. Additional features, such as facial dysmorphism, developmental delay or intellectual disability (ID), congenital anomalies, neurological problems and an increased risk of neoplasia are usually associated with OGS. Genetic analysis in patients with overlapping clinical features is essential, to distinguish between two or more similar conditions, and to provide appropriate genetic counseling and recommendations for follow up. In the present paper, we report five new patients (from four unrelated families) with an X-linked mental retardation syndrome with overgrowth (XMR93 syndrome), also known as XLID-BRWD3-related syndrome. The main features of these patients include ID, macrocephaly and dysmorphic facial features. XMR93 syndrome is a recently described disorder caused by mutations in the Bromodomain and WD-repeat domain-containing protein 3 (BRWD3) gene. This article underscores the importance of genetic screening by exome sequencing for patients with OGS and ID with unclear clinical diagnosis, and expands the number of reported individuals with XMR93 syndrome, highlighting the clinical features of this unusual disease.


Subject(s)
Megalencephaly/genetics , Mental Retardation, X-Linked/genetics , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Developmental Disabilities , Humans , Male , Megalencephaly/metabolism , Megalencephaly/physiopathology , Mental Retardation, X-Linked/physiopathology , Mutation , Pedigree , Registries , Transcription Factors/metabolism , Exome Sequencing
16.
J Med Genet ; 55(4): 278-284, 2018 04.
Article in English | MEDLINE | ID: mdl-29358272

ABSTRACT

BACKGROUND: Stüve-Wiedemann syndrome (SWS) is characterised by bowing of the lower limbs, respiratory distress and hyperthermia that are often responsible for early death. Survivors develop progressive scoliosis and spontaneous fractures. We previously identified LIFR mutations in most SWS cases, but absence of LIFR pathogenic changes in five patients led us to perform exome sequencing and to identify homozygosity for a FAM46A mutation in one case [p.Ser205Tyrfs*13]. The follow-up of this case supported a final diagnosis of osteogenesis imperfecta (OI), based on vertebral collapses and blue sclerae. METHODS AND RESULTS: This prompted us to screen FAM46A in 25 OI patients with no known mutations.We identified a homozygous deleterious variant in FAM46A in two affected sibs with typical OI [p.His127Arg]. Another homozygous variant, [p.Asp231Gly], also classed as deleterious, was detected in a patient with type III OI of consanguineous parents using homozygosity mapping and exome sequencing.FAM46A is a member of the superfamily of nucleotidyltransferase fold proteins but its exact function is presently unknown. Nevertheless, there are lines of evidence pointing to a relevant role of FAM46A in bone development. By RT-PCR analysis, we detected specific expression of FAM46A in human osteoblasts andinterestingly, a nonsense mutation in Fam46a has been recently identified in an ENU-derived (N-ethyl-N-nitrosourea) mouse model characterised by decreased body length, limb, rib, pelvis, and skull deformities and reduced cortical thickness in long bones. CONCLUSION: We conclude that FAM46A mutations are responsible for a severe form of OI with congenital bowing of the lower limbs and suggest screening this gene in unexplained OI forms.


Subject(s)
Exome Sequencing , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Proteins/genetics , Animals , Bone Development/genetics , Bone and Bones/pathology , Consanguinity , Female , Genes, Recessive/genetics , Homozygote , Humans , Infant , Male , Mice , Mutation , Osteoblasts/pathology , Osteogenesis Imperfecta/physiopathology , Pedigree , Phenotype , Polynucleotide Adenylyltransferase
17.
Genet Med ; 20(8): 882-889, 2018 08.
Article in English | MEDLINE | ID: mdl-29446767

ABSTRACT

PURPOSE: CLAPO syndrome is a rare vascular disorder characterized by capillary malformation of the lower lip, lymphatic malformation predominant on the face and neck, asymmetry, and partial/generalized overgrowth. Here we tested the hypothesis that, although the genetic cause is not known, the tissue distribution of the clinical manifestations in CLAPO seems to follow a pattern of somatic mosaicism. METHODS: We clinically evaluated a cohort of 13 patients with CLAPO and screened 20 DNA blood/tissue samples from 9 patients using high-throughput, deep sequencing. RESULTS: We identified five activating mutations in the PIK3CA gene in affected tissues from 6 of the 9 patients studied; one of the variants (NM_006218.2:c.248T>C; p.Phe83Ser) has not been previously described in developmental disorders. CONCLUSION: We describe for the first time the presence of somatic activating PIK3CA mutations in patients with CLAPO. We also report an update of the phenotype and natural history of the syndrome.


Subject(s)
Arteriovenous Malformations/genetics , Arteriovenous Malformations/physiopathology , Class I Phosphatidylinositol 3-Kinases/genetics , Lymphatic Diseases/genetics , Lymphatic Diseases/physiopathology , Adolescent , Adult , Child , Class I Phosphatidylinositol 3-Kinases/physiology , Female , Genetic Association Studies/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation , Phosphatidylinositol 3-Kinases/genetics , Retrospective Studies
18.
Hum Mol Genet ; 24(14): 4126-37, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25908617

ABSTRACT

Most patients with Ellis-van Creveld syndrome (EvC) are identified with pathogenic changes in EVC or EVC2, however further genetic heterogeneity has been suggested. In this report we describe pathogenic splicing variants in WDR35, encoding retrograde intraflagellar transport protein 121 (IFT121), in three families with a clinical diagnosis of EvC but having a distinctive phenotype. To understand why WDR35 variants result in EvC, we analysed EVC, EVC2 and Smoothened (SMO) in IFT-A deficient cells. We found that the three proteins failed to localize to Wdr35(-/-) cilia, but not to the cilium of the IFT retrograde motor mutant Dync2h1(-/-), indicating that IFT121 is specifically required for their entry into the ciliary compartment. Furthermore expression of Wdr35 disease cDNAs in Wdr35(-/-) fibroblasts revealed that the newly identified variants lead to Hedgehog signalling defects resembling those of Evc(-/-) and Evc2(-/-) mutants. Together our data indicate that splicing variants in WDR35, and possibly in other IFT-A components, underlie a number of EvC cases by disrupting targeting of both the EvC complex and SMO to cilia.


Subject(s)
Cilia/metabolism , Ellis-Van Creveld Syndrome/genetics , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Cells, Cultured , Child, Preschool , Cytoskeletal Proteins , Exome , Exons , Fibroblasts/metabolism , Genetic Variation , Hedgehog Proteins , Humans , Infant , Intracellular Signaling Peptides and Proteins , Pedigree , Phenotype , Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Smoothened Receptor
19.
Opt Express ; 25(5): 4800-4809, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380749

ABSTRACT

In this paper we demonstrate the passive, material-based athermalization of all-fiber architectures by cascading multimode interference (MMI) devices. In-line thermal compensation is achieved by including a liquid-core multimode section of variable length that allows ensuring temperature-independent operation while preserving the inherent filter-like spectral response of the MMI devices. The design of the temperature compensation unit is straightforward and its fabrication is simple. The applicability of our approach is experimentally verified by fabricating a wavelength-locked MMI laser with sensitivity of only -0.1 pm/°C, which is at least one order of magnitude lower than that achieved with other fiber optics devices.

20.
Am J Med Genet A ; 173(3): 601-610, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28127875

ABSTRACT

Hypophosphatasia (HPP) is a rare autosomal dominant or recessive metabolic disorder caused by mutations in the tissue nonspecific alkaline phosphatase gene (ALPL). To date, over 300 different mutations in ALPL have been identified. Disease severity is widely variable with severe forms usually manifesting during perinatal and/or infantile periods while mild forms are sometimes only diagnosed in adulthood or remain undiagnosed. Common clinical features of HPP are defects in bone and tooth mineralization along with the biochemical hallmark of decreased serum alkaline phosphatase activity. The incidence of severe HPP is approximately 1 in 300,000 in Europe and 1 in 100,000 in Canada. We present the clinical and molecular findings of 83 probands and 28 family members, referred for genetic analysis due to a clinical and biochemical suspicion of HPP. Patient referrals included those with isolated low alkaline phosphatase levels and without any additional clinical features, to those with a severe skeletal dysplasia. Thirty-six (43.3%) probands were found to have pathogenic ALPL mutations. Eleven previously unreported mutations were identified, thus adding to the ever increasing list of ALPL mutations. Seven of these eleven were inherited in an autosomal dominant manner while the remaining four were observed in the homozygous state. Thus, this study includes a large number of well-characterized patients with hypophosphatasemia which has permitted us to study the genotype:phenotype correlation. Accurate diagnosis of patients with a clinical suspicion of HPP is crucial as not only is the disease life-threatening but the patients may be offered bone targeted enzymatic replacement therapy. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alkaline Phosphatase/genetics , Genetic Association Studies , Hypophosphatasia/diagnosis , Hypophosphatasia/genetics , Phenotype , Adolescent , Adult , Alleles , Amino Acid Substitution , DNA Mutational Analysis , Exons , Female , Genetic Testing , Genotype , Humans , Inheritance Patterns , Male , Middle Aged , Mutation , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL